Notes: 1. Solve all five questions.
2. All questions carry equal marks.

UNIT - I

1. a) Perform four iterations of the Bisection method to find a real root of $x^{4}-x-10=0$.
b) Find the positive root of $x^{3}-x-2=0$ by the secant method in five iterations. The initial estimates are $\mathrm{x}_{1}=1, \mathrm{x}_{2}=2$.

OR

c) Use the Gauss-Jordan method to solve the system
$x+y+z=6,2 x-3 y+4 z=1$,
$3 x+4 y+5 z=25$
d) Solve the system of equations.
$20 \mathrm{x}+\mathrm{y}-2 \mathrm{z}=17,3 \mathrm{x}+20 \mathrm{y}-\mathrm{z}=-18$,
$2 x-3 y+20 z=25$ by Jacobi's iteration method

UNIT - II

2. a) Determine the missing term in the following data:
x: $\begin{array}{llllll}0 & 1 & 2 & 3 & 4\end{array}$
y: $12-3477$
b) Show that the operators μ and E commute ie $\mu \mathrm{E}=\mathrm{E} \mu$.

OR

c) Use NG backward interpolation formula to find a polynomial of degree two from the data:
x: $\begin{array}{lllllll}0 & 1 & 2 & 3 & 4 & 5\end{array}$
y: $\begin{array}{lllllll}1 & 3 & 7 & 13 & 21 & 31\end{array}$
d) Use Lagrang interpolation formula to find $\mathrm{y}(10)$ from the following values of x \& y
x: 506911
y: $\begin{array}{lllll}12 & 13 & 14 & 16\end{array}$

UNIT - III

3. a) The following data gives the velocity of a particle for 20 seconds at an interval of 5 seconds.
t: $0 \begin{array}{llll}5 & 10 & 15\end{array}$
20
v: $0 \quad 10 \quad 70 \quad 180 \quad 340$

Find the initial acceleration and the acceleration at $\mathrm{t}=20$ seconds.
b) Let the function $\mathrm{y}=\mathrm{f}(\mathrm{x})$ be given by the following tabulated values:
x: $1.0 \begin{array}{llllll}1.2 & 1.4 & 1.6 & 1.8 & 2.0\end{array}$
$\mathrm{y}: 0$
$0.13 \quad 0.54$
1.31
2.43
4.00

Find the first derivatives of the function tabulated at the points $x=0.9$.

OR

c) The following table gives the relation between steam pressure y and temperature x :

x (temperature):	140	150	160	170	185
y (pressure):	4	5	6	8	11

Find the rate of change of pressure with respect to temperature when $x=180$.
d) Find the maxima and minima of the function $y=f(x)$ specified by the following data:
x: $\begin{array}{lllll}-1 & 0 & 1 & 2\end{array}$
y: $\begin{array}{lllll}-12 & -7 & 4 & 33\end{array}$

UNIT - IV

4. a) Evaluate $\int_{0}^{3} \frac{1}{1+\mathrm{x}^{2}} \mathrm{dx}$ by Simpson three-eight rule.
b) Evaluate the integral $\int_{0}^{2} \mathrm{e}^{\mathrm{x}^{2}} d x$ by trapezoidal rule.

OR

c) Use Boole's five point formula to evaluate
$\int_{0}^{\pi / 2} \sqrt{\sin x} d x$.
d) Evaluate $\int_{1}^{2} \frac{\mathrm{dx}}{1+\mathrm{x}}$ by Simpson's one-third method with $\mathrm{h}=0.5$, find the maximum error.
5. Solve any six.
a) Obtain Newton-Raphson formula for reciprocal root.
b) Define a strictly diagonally dominated matrix.
c) Prove that $\delta=\mathrm{E}^{1 / 2}-\mathrm{E}^{-1 / 2}$
d) If h is the interval of differencing, then prove that $E=e^{h D}$. $\quad 2$
e) Write the Newton general backward difference formula for first derivatives.
f) Write the special Newton forward formula for second derivatives at tabular points near X_{0}.
g) Define a error constant.
h) Define a degree of precision.

