B.Sc.- III (CBCS Pattern) Sem-VI 021C - Mathematics Paper-I - DSE-V : Numerical Methods

P. Pages : 2 Time : Three Hours		2 aree Hours $\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	GUG/W/22/13363 Max. Marks : 60		
	Note	es : 1. Solve all five questions. 2. All questions carry equal marks.			
		UNIT – I			
1.	a)	Perform four iterations of the Bisection method to find a real root of x	$x^4 - x - 10 = 0$. 6		
	b)	Find the positive root of $x^3 - x - 2 = 0$ by the secant method in five ite estimates are $x_1 = 1$, $x_2 = 2$.	erations. The initial 6		
		OR			
	c)	Use the Gauss-Jordan method to solve the system $x + y + z = 6$, $2x - 3y + 4z = 1$,	6		
		3x + 4y + 5z = 25			
	d)	Solve the system of equations. 20x + y - 2z = 17, $3x + 20y - z = -18$,	6		
		2x - 3y + 20z = 25 by Jacobi's iteration method			
		UNIT – II			
2.	a)	Determine the missing term in the following data: $x: 0 \ 1 \ 2 \ 3 \ 4$	6		
		y: 1 2 - 34 77			
	b)	Show that the operators μ and E commute is $\mu E = E\mu$.	6		
	c)	Use NG backward interpolation formula to find a polynomial of degre x: 0 1 2 3 4 5	the two from the data: 6		
		y: 1 3 7 13 21 31			
	d)	Use Lagrang interpolation formula to find $y(10)$ from the following va x: 5 6 9 11	llues of x & y 6		
		y: 12 13 14 16			
		UNIT – III			

The following data gives the velocity of a particle for 20 seconds at an interval of 5 seconds.

a) t: 0 5 10 15 20 v: 0 10 70 180 340

Find the initial acceleration and the acceleration at t=20 seconds.

3.

6

Let the function y = f(x) be given by the following tabulated values: b) 1.0 1.2 1.4 1.6 1.8 2.0x : 0 0.13 0.54 1.31 2.43 4.00 v: Find the first derivatives of the function tabulated at the points x = 0.9.

OR

6

6

6

- The following table gives the relation between steam pressure y and temperature x: c) x(temperature): 140 150 160 170 185 y(pressure): 4 5 6 8 11 Find the rate of change of pressure with respect to temperature when x = 180.
- d) Find the maxima and minima of the function y = f(x) specified by the following data: 6 x: -1 0 1 2 v: -12 -7 4 33

UNIT - IV

- 4. a) Evaluate $\int_{0}^{3} \frac{1}{1+x^2} dx$ by Simpson three-eight rule.
 - Evaluate the integral $\int_{-\infty}^{\infty} e^{x^2} dx$ by trapezoidal rule. b)

OR

- c) Use Boole's five point formula to evaluate 6 $\int_{0}^{\sqrt{\sqrt{\sin x}}} dx.$ d) Evaluate $\int_{1}^{2} \frac{dx}{1+x}$ by Simpson's one-third method with h = 0.5, find the maximum error. 6
- 5.

Solve any six.

Obtain Newton-Raphson formula for reciprocal root. 2 a) 2 b) Define a strictly diagonally dominated matrix. Prove that $\delta = E^{1/2} - E^{-1/2}$ 2 c) 2 If h is the interval of differencing, then prove that $E = e^{hD}$ d) 2 e) Write the Newton general backward difference formula for first derivatives. Write the special Newton forward formula for second derivatives at tabular points 2 f) near X_0 . 2 Define a error constant. **g**) 2 h) Define a degree of precision.
