B.Sc.- III (NEW / CBCS Pattern) Sem-VI 021C - Mathematics Paper-IV - DSE-VIII : Special Relativity-II

P. Pages: 2

Time : Three Hours

* 2 2 9 3 *

GUG/W/22/13362

Max. Marks: 60

Notes : 1. All the questions are compulsory. 2. Each question carries equal marks.

UNIT - I

1. a) If $f = a_{rs} x^r x^s$ then show that

$$\frac{\partial f}{rx^{r}} = (a_{rs} + a_{sr})x^{s}, \frac{\partial^{2} f}{\partial x^{r} \partial x^{s}} = a_{rs} + a_{sr}$$

b) A covariant vector has components 2x - z, x^2y , yz in rectangular coordinates find its covariant components in cylindrical coordinates. **6**

OR

- c) For a mixed tensor T_{nrs}^{m} of order 4 show that T_{nrs}^{n} is a tensor of order 2. 6
- d) Show that

i)
$$dg_{pr} = -g_{ps}g_{rm}dg^{sm}$$

ii)
$$\frac{dg}{g} = g^{mn} dg_{mn} = -g_{mn} dg^{mn}$$

UNIT – II

2. a) Show that:

i) $[mn, r] = g_{rs}\Gamma_{mn}^{s}$ ii) $g_{mn,r} = [mr, n] + [nr, m]$

b)	Find nonvanishing components of Christoffel symbols of 2 nd kind for	6
	$ds^{2} = (dx^{1})^{2} + f(x^{1}, x^{2})(dx^{2})^{2}.$	

OR

- c) Show that under a linear transformation of a coordinate system $x^m = a_n^m x'^n + b^m$ the Christoffel symbols are tensors, where $a_n^m \& b^m$ are constants.
- d) Show that the absolute derivative of a scalar is its ordinary derivative 6 ie $\frac{\delta A}{\delta u} = \frac{dA}{du}$, where A is scalar.

1

6

6

6

6

3. a) Obtain the mass of the moving particle.

b) Show that $P^2 - E^2/C^2$ is invariant whose numerical value is $-m_0^2 c^2$. 6

OR

- Show that the four velocity in component form can be expressed as $u^{i} = \left(\frac{\overline{u}}{\sqrt[r]{1-u^{2}/c^{2}}}, \frac{1}{\sqrt{1-u^{2}/c^{2}}}\right), \overline{u} = (u_{x}, u_{y}, u_{z})$
- d) Obtain the equation of motion of a free particle.

UNIT - IV

- **4.** a) Obtain the Maxwell's equations of electromagnetic theory in vacuum in the component **6** form.
 - b) Show that the Hamiltonian for a charged particle moving in an electromagnetic field is **6**

$$\mathbf{H} = \left[\mathbf{m}_0^2 \mathbf{c}^4 + \mathbf{c}^2 \left(\mathbf{p} - \frac{\mathbf{e}}{\mathbf{c}} \mathbf{A} \right)^2 \right]^{\overline{2}} + \mathbf{e} \phi.$$

OR

- c) An electromagnetic field is purely magnetic in an inertial frames then describe the field in 6 inertial frame's.
- d) Explain the gauge transformations.
- 5. Solve any six.

c)

a) Show that $a_{mn}x^mx^n = 0$ for a skew symmetric tensor a_{mn} .

- b) Define covariant tensor of order 1 & 2.
- c) Show that R_{rm} is a symmetric tensor.
 - d) Define Einstein tensor.

e) Show that the four force & four velocity are orthogonal to each other.

f) Show that $\frac{dE}{dp} = u$.

g) Write the equation $E = -\text{grod}\phi - \frac{1}{c}\frac{\partial A}{\partial t}$ in component form.

h) Show that the energy momentum tensor T^{ij} is symmetric.

2

2

6

2

2

2

2

2

2

2

6

6

6