021C - Mathematics Paper-IV - DSE-VIII : Special Relativity-II

P. Pages : 2

GUG/W/22/13362
Time : Three Hours

Notes: 1. All the questions are compulsory.
2. Each question carries equal marks.

UNIT - I

1. a) If $f=a_{r S} x^{r} x^{s}$ then show that

$$
\frac{\partial \mathrm{f}}{\mathrm{rx}^{\mathrm{r}}}=\left(\mathrm{a}_{\mathrm{rs}}+\mathrm{a}_{\mathrm{sr}}\right) \mathrm{x}^{\mathrm{s}}, \frac{\partial^{2} \mathrm{f}}{\partial \mathrm{x}^{\mathrm{r}} \partial \mathrm{x}^{\mathrm{s}}}=\mathrm{a}_{\mathrm{rs}}+\mathrm{a}_{\mathrm{sr}}
$$

b) A covariant vector has components $2 x-z, x^{2} y$, $y z$ in rectangular coordinates find its covariant components in cylindrical coordinates.

OR

c) For a mixed tensor $\mathrm{T}_{\mathrm{nrs}}^{\mathrm{m}}$ of order 4 show that $\mathrm{T}_{\mathrm{nrs}}^{\mathrm{n}}$ is a tensor of order 2 .
d) Show that
i) $\quad \mathrm{dg}_{\mathrm{pr}}=-\mathrm{g}_{\mathrm{ps}} \mathrm{g}_{\mathrm{rm}} \mathrm{dg}^{\mathrm{sm}}$
ii) $\frac{\mathrm{dg}}{\mathrm{g}}=\mathrm{g}^{\mathrm{mn}} \mathrm{dg}_{\mathrm{mn}}=-\mathrm{g}_{\mathrm{mn}} \mathrm{dg}^{\mathrm{mn}}$.

UNIT - II
2. a) Show that:
i) $[\mathrm{mn}, \mathrm{r}]=\mathrm{g}_{\mathrm{rs}} \Gamma_{\mathrm{mn}}^{\mathrm{s}}$
ii) $\mathrm{g}_{\mathrm{mn}, \mathrm{r}}=[\mathrm{mr}, \mathrm{n}]+[\mathrm{nr}, \mathrm{m}]$
b) Find nonvanishing components of Christoffel symbols of $2^{\text {nd }}$ kind for

$$
\mathrm{ds}^{2}=(\mathrm{dx})^{1}+\mathrm{f}\left(\mathrm{x}^{1}, \mathrm{x}^{2}\right)\left(\mathrm{dx}^{2}\right)^{2}
$$

OR

c) Show that under a linear transformation of a coordinate system $x^{m}=a_{n}^{m} x^{\prime n}+b^{m}$ the Christoffel symbols are tensors, where $\mathrm{a}_{\mathrm{n}}^{\mathrm{m}} \& \mathrm{~b}^{\mathrm{m}}$ are constants.
d) Show that the absolute derivative of a scalar is its ordinary derivative ie $\frac{\delta A}{\delta u}=\frac{d A}{d u}$, where A is scalar .

UNIT - III

3. a) Obtain the mass of the moving particle.
b) Show that $P^{2}-E^{2} / C^{2}$ is invariant whose numerical value is $-m_{0}^{2} c^{2}$.

OR

c) Show that the four velocity in component form can be expressed as-
$\mathrm{u}^{\mathrm{i}}=\left(\frac{\overline{\mathrm{u}}}{\sqrt[c]{1-\mathrm{u}^{2} / \mathrm{c}^{2}}}, \frac{1}{\sqrt{1-\mathrm{u}^{2} / \mathrm{c}^{2}}}\right), \overline{\mathrm{u}}=\left(\mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}}, \mathrm{u}_{\mathrm{z}}\right)$
d) Obtain the equation of motion of a free particle.

UNIT - IV

4. a) Obtain the Maxwell's equations of electromagnetic theory in vacuum in the component form.
b) Show that the Hamiltonian for a charged particle moving in an electromagnetic field is $H=\left[m_{0}^{2} c^{4}+c^{2}\left(p-\frac{e}{c} A\right)^{2}\right]^{\frac{1}{2}}+e \phi$.

OR

c) An electromagnetic field is purely magnetic in an inertial frames then describe the field in inertial frame's.
d) Explain the gauge transformations.
5. Solve any six.
a) Show that $a_{m n} x^{m} x^{n}=0$ for a skew symmetric tensor $a_{m n}$.
b) Define covariant tensor of order $1 \& 2$.
c) Show that $R_{r m}$ is a symmetric tensor.

d) Define Einstein tensor.
e) Show that the four force \& four velocity are orthogonal to each other.
f) Show that $\frac{\mathrm{dE}}{\mathrm{dp}}=\mathrm{u}$.
g) Write the equation $\mathrm{E}=-\operatorname{grod} \phi-\frac{1}{\mathrm{c}} \frac{\partial \mathrm{A}}{\partial \mathrm{t}}$ in component form.
h) Show that the energy momentum tensor T^{ij} is symmetric.

