B.Sc. (CBCS Pattern) Sem-VI 021A - Mathematics-II - DSE-VI : Complex Analysis and Vector Calculus

P. F Tin	Pages : ne : Th	2 ree Hours $x^2 + 2^2 + 2^2 + x$	GUG/W/22/13361 Max. Marks : 60		
	Not	es : 1. Solve all five questions. 2. Each questions carry equal marks.			
		UNIT – I			
1.	a)	If $F(z)$ is analytic function with constant modulus, show that $F(z)$ is constant	ant. 6		
	b)	Prove that the function sin z is analytic and find it's derivative.	6		
		OR			
	c)	Show that $u = 2x - x^3 + 3xy^2$ is harmonic and find it's harmonic conjugate find the analytic function $F(z) = u + iv$.	function. Hence 6		
	d)	Prove that the cross ratio remains invariant under a bilinear transformation	ı. 6		
		UNIT – II			
2.	a)	Evaluate $\int_{0}^{1+2i} z^{-2} dz$ along the real axis to 1 and then vertically to 1 + 2i.	6		
	b)	Let F(z) be analytic in a simply connected domain D and let C be a simple D oriented counterclockwise then prove that for any point a within C, $\oint_C \frac{F(z)}{z-a} dz = 2\pi i f(a)$	closed curve in 6		
	OR				
	c)	Let z = a be a simple poles of $F(z) = \frac{F(z)}{G(z)}$, such that $F(a) \neq 0$. Then prov $R_a = \frac{F(a)}{G'(a)}$.	e that 6		
	d)	Evaluate the residue of $f(z) = \frac{z^2}{(z-1)(z-2)(z-3)}$ at $z = 1, 2, 3$ and infinite	6 ty and show that		

UNIT – III

3. a) If
$$\phi = 3x^2y - y^3z^2$$
, find grad ϕ at the point (1, -2, -1) 6

their sum is zero.

b) Find the directional derivative of $\phi = x^2 - 2y^2 + 4z^2$ at (1, 1, -1) in the directional of the vector 2i + j - k, In what directional derivative from the point (1,1,-1) is maximum and what is it's value?

OR

6

6

- c) If $\overline{F} = x^2 z i 2y^3 z^2 j + xy^2 z k$, find div \overline{F} and curl \overline{F} at (1, -1, 1).
- d) The acceleration of a particle at any time is $e^{t}i + e^{2t}j + k$. Find the velocity \overline{v} and r if v and r are zero at t = 0. 6

UNIT – IV

- 4. a) Evaluate $\iint_{s} \overline{f} \cdot n \, ds$, where $\overline{f} = x^{2}i + y^{2}j + z^{2}k$ and S is the surface of the solid cut off by 6 the plane x + y + z = a from the first octant.
 - b) Evaluate by stokes theorem $\int_{c} (e^{x} dx + 2y dy dz)$, where C is the curve $x^{2} + y^{2} = 4$, z = 2 6

OR

С	State and prove stokes' theorem.	6
d	Verify Green's theorem in the plane for $\oint (3x^2 - 4y^2) dx - 2xy dy$, wh	ere C is the 6
	boundary of the region R defined by $y = \sqrt{x}$, $y = x^2$.	
	Solve any six of the following.	
	i) State Cauchy-Riemann equation in cartesian form.	2
	ii) Let $F(z) = x$ show that the CR equation are not satisfied in the z-p	blane. 2
	iii) Define simple closed curve.	2
	iv) Evaluate $\int_{C} (z-z^2) dz$, where C is the upper half of the circle $ z $	=1. 2
	v) If $\overline{\mathbf{r}} = x\overline{\mathbf{i}} + y\overline{\mathbf{j}} + z\overline{\mathbf{k}}$, find div $\overline{\mathbf{r}}$ and curl $\overline{\mathbf{r}}$	2
	vi) Prove that $\nabla^2\left(\frac{1}{r}\right) = 0$.	2
	vii) Define Simply connected regions R.	2
	viii) State Green's theorem in a plane.	2

5.