B.Sc. (CBCS Pattern) Sem-VI

021A - Mathematics-II - DSE-VI : Complex Analysis and Vector Calculus

P. Pages : 2

GUG/W/22/13361
Time : Three Hours

Notes : 1. Solve all five questions.
2. Each questions carry equal marks.

UNIT - I

1. a) If $\mathrm{F}(\mathrm{z})$ is analytic function with constant modulus, show that $\mathrm{F}(\mathrm{z})$ is constant.
b) Prove that the function $\sin \mathrm{z}$ is analytic and find it's derivative.

OR

c) Show that $u=2 x-x^{3}+3 x y^{2}$ is harmonic and find it's harmonic conjugate function. Hence find the analytic function $F(z)=u+i v$.
d) Prove that the cross ratio remains invariant under a bilinear transformation.
2. a)

Evaluate $\int_{0}^{1+2 i} z^{-2} d z$ along the real axis to 1 and then vertically to $1+2 \mathrm{i}$.
b) Let $\mathrm{F}(\mathrm{z})$ be analytic in a simply connected domain D and let C be a simple closed curve in D oriented counterclockwise then prove that for any point a within C,
$\oint_{C} \frac{F(z)}{z-a} d z=2 \pi i f(a)$

OR

c) Let $\mathrm{z}=$ a be a simple poles of $\mathrm{F}(\mathrm{z})=\frac{\mathrm{F}(\mathrm{z})}{\mathrm{G}(\mathrm{z})}$, such that $\mathrm{F}(\mathrm{a}) \neq 0$. Then prove that $\mathrm{R}_{\mathrm{a}}=\frac{\mathrm{F}(\mathrm{a})}{\mathrm{G}^{\prime}(\mathrm{a})}$.
d) Evaluate the residue of $f(z)=\frac{z^{2}}{(z-1)(z-2)(z-3)}$ at $z=1,2,3$ and infinity and show that their sum is zero.
UNIT - III
3. a) If $\phi=3 x^{2} y-y^{3} z^{2}$, find grad ϕ at the point $(1,-2,-1)$
b) Find the directional derivative of $\phi=x^{2}-2 y^{2}+4 z^{2}$ at (1, 1, -1$)$ in the directional of the vector $2 \mathrm{i}+\mathrm{j}-\mathrm{k}$, In what directional derivative from the point $(1,1,-1)$ is maximum and what is it's value?

OR

c) If $\overline{\mathrm{F}}=\mathrm{x}^{2} \mathrm{zi}-2 y^{3} \mathrm{z}^{2} j+x y^{2} z k$, find div $\overline{\mathrm{F}}$ and curl $\overline{\mathrm{F}}$ at $(1,-1,1)$.
d) The acceleration of a particle at any time is $e^{t} i+e^{2 t} j+k$. Find the velocity \bar{v} and r if v and r are zero at $\mathrm{t}=0$.

UNIT - IV

4. a) Evaluate $\iint_{\mathrm{s}} \overline{\mathrm{f}} . \mathrm{nds}$, where $\overline{\mathrm{f}}=\mathrm{x}^{2} \mathrm{i}+\mathrm{y}^{2} \mathrm{j}+\mathrm{z}^{2} \mathrm{k}$ and S is the surface of the solid cut off by the plane $\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{a}$ from the first octant.
b) Evaluate by stokes theorem $\int_{c}\left(e^{x} d x+2 y d y-d z\right)$, where C is the curve $x^{2}+y^{2}=4, z=2$

OR

c) State and prove stokes' theorem.
d) Verify Green's theorem in the plane for $\oint_{c}\left(3 x^{2}-4 y^{2}\right) d x-2 x y d y$, where C is the boundary of the region R defined by $y=\sqrt{x}, y=x^{2}$.
5. Solve any six of the following.
i) State Cauchy-Riemann equation in cartesian form.
ii) Let $\mathrm{F}(\mathrm{z})=\mathrm{x}$ show that the CR equation are not satisfied in the z -plane.
iii) Define simple closed curve.
iv) Evaluate $\int_{C}\left(z-z^{2}\right) d z$, where C is the upper half of the circle $|z|=1$.
v) If $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$, find div \bar{r} and curl \bar{r}
vi) Prove that $\nabla^{2}\left(\frac{1}{\mathrm{r}}\right)=0$.
vii) Define Simply connected regions R.
viii) State Green's theorem in a plane.

