B.Sc.-III (CBCS Pattern) Semester - V USMT12 : DSE : Mathematics-IV (Special Relativity-I)

P. P. Tim	ages : e : Th	2 ree Hours $\star 0 2 6 1 \star$	GUG/S/23/13118 Max. Marks : 60
	Note	es : 1. All the questions carry equal marks. 2. Solve all the five questions.	
		UNIT – I	
1.	a)	Show that Newton's Kinematical equations of motion are invariant under Ga transformations.	lilean 6
	b)	According to the Fitzgerald & Lorentz contraction hypothesis show that N =	0. 6
		OR	
	c)	Obtain the Galilean transformations.	6
	d)	Show that the Maxwell's equations do not remain invariant under G.T.	6
		UNIT – II	
2.	a)	Show that set of all Lorentz transformations forms a group.	6
	b)	Show that simultaneity is relative in special relativity.	6
		OR	
	c)	Show that $x^2 + y^2 + z^2 - c^2t^2$ is Lorentz invariant state the two postulates of relativity.	f special 6
	d)	Explain the time dilation in briefly.	6
		UNIT – III	
3.	a)	Obtain the transformations of the particle velocities.	6
	b)	In a system S' let $u'_x = c \cos \theta$, $u'_y = c \sin \theta$ & if S' moves with velocity v along x-axis then show that $u'_x = u'_y = c^2$ in S.	relative to S 6
		OR	
	c)	Obtain the transformations of the Lorentz contraction factor.	6

d) A system S' moves with velocity 0.6C relative to system S along the positive direction of x-axis. Find the velocity of the particle in the system S, if the particle moves with velocity u' = (0.4c)i + (0.3c)j + (0.2c)k in S'.

$\mathbf{UNIT} - \mathbf{IV}$

- a) Define the events occurring at the same point. Show that there exists an inertial system S' 6 in which the two events occur at one & the same time if the interval between two events is space like.
 - b) Obtain the Lorentz transformations in index form & find the partial derivatives of these **6** transformations.

OR

c) Define the four tensor & show that $T'^{12} = \alpha \left[T^{12} - \frac{v}{c} T^{42} \right]$ & hence show that for antisymmetric four tensor $T'^{12} = \alpha \left[T^{12} + \frac{v}{c} T^{24} \right]$

6

d) Show that the moving clocks go slow than those at rest.

5. Solve any six questions.

a)	Define the inertial system & the event.	2
b)	State the four Maxwell's equations in vacuum.	2
c)	Show that the element dxdydz is not Lorentz invariant.	2
d)	State the wave equation.	2
e)	Obtain the relativistic addition law for velocities.	2
f)	How we confirm the constancy of the speed of light in inertial frames.	2
g)	Define the timelike & spacelike intervals.	2
h)	Define the world line & world points.	2
