B.Sc.-III (CBCS Pattern) Semester - V

USMT12 : DSE : Mathematics-IV (Special Relativity-I)

P. Pages : 2

Time : Three Hours

GUG/S/23/13118
Max. Marks : 60

Notes : 1. All the questions carry equal marks.
2. Solve all the five questions.

UNIT - I

1. a) Show that Newton's Kinematical equations of motion are invariant under Galilean transformations.
b) According to the Fitzgerald \& Lorentz contraction hypothesis show that $\mathrm{N}=0$.

OR

c) Obtain the Galilean transformations.
d) Show that the Maxwell's equations do not remain invariant under G.T.

UNIT - II
2. a) Show that set of all Lorentz transformations forms a group.
b) Show that simultaneity is relative in special relativity.

OR

c) Show that $x^{2}+y^{2}+z^{2}-c^{2} t^{2}$ is Lorentz invariant state the two postulates of special relativity.
d) Explain the time dilation in briefly.
UNIT - III
3. a) Obtain the transformations of the particle velocities.
b) In a system S^{\prime} let $u_{x}{ }^{\prime}=c \cos \theta, u_{\mathrm{y}}{ }^{\prime}=\mathrm{c} \sin \theta$ \& if S^{\prime} moves with velocity v relative to S along x -axis then show that $\mathrm{u}_{\mathrm{x}}^{2}+\mathrm{u}_{\mathrm{y}}^{2}=\mathrm{c}^{2}$ in S .

OR

c) Obtain the transformations of the Lorentz contraction factor.
d) A system S^{\prime} moves with velocity 0.6 C relative to system S along the positive direction of x-axis. Find the velocity of the particle in the system S, if the particle moves with velocity $u^{\prime}=(0.4 \mathrm{c}) \mathrm{i}+(0.3 \mathrm{c}) \mathrm{j}+(0.2 \mathrm{c}) \mathrm{k} \mathrm{in}^{\prime}$.

UNIT - IV

4. a) Define the events occurring at the same point. Show that there exists an inertial system S^{\prime} in which the two events occur at one $\&$ the same time if the interval between two events is space like.
b) Obtain the Lorentz transformations in index form \& find the partial derivatives of these transformations.

OR

c) Define the four tensor \& show that $\mathrm{T}^{\prime 12}=\alpha\left[\mathrm{T}^{12}-\frac{v}{\mathrm{c}} \mathrm{T}^{42}\right]$ \& hence show that for antisymmetric four tensor $\mathrm{T}^{\prime 12}=\alpha\left[\mathrm{T}^{12}+\frac{v}{\mathrm{c}} \mathrm{T}^{24}\right]$
d) Show that the moving clocks go slow than those at rest.
5. Solve any six questions.
a) Define the inertial system \& the event.
b) State the four Maxwell's equations in vacuum.
c) Show that the element dxdydz is not Lorentz invariant.
d) State the wave equation.
e) Obtain the relativistic addition law for velocities.
f) How we confirm the constancy of the speed of light in inertial frames.
g) Define the timelike \& spacelike intervals.
h) Define the world line \& world points.

