B.Sc.- III (CBCS Pattern) Sem-V

USMT11 - Mathematics-III - DSE : Matrices and Theory of Equation

P. Pages : 2

GUG/W/22/13117
Time : Three Hours

Notes: 1. Solve all the five question.
2. Que. No $\mathbf{1}$ to $\mathbf{4}$ has an alternative. Solve each question in full or its alternative in full.
3. All question carry equal marks.

UNIT - I

1. a) Define, conjugate, Hermitian matrix, and symmetric matrix.
$(A B)^{T}=B^{T} A^{T}$. Where T for transpose.

OR

c) Reduce the matrix $\mathrm{A}=\left[\begin{array}{lll}3 & 5 & 7 \\ 2 & 4 & 4 \\ 1 & 2 & 3\end{array}\right]$ to the normal form and find its rank.
d) Find the rank of matrix A by reducing to the normal form.

$$
\mathrm{A}=\left[\begin{array}{cccc}
1 & 1 & -1 & 1 \\
1 & -1 & 2 & -1 \\
3 & 1 & 0 & 1
\end{array}\right]
$$

UNIT - II

2. a) Find all non - trival solution of

$$
x-2 y+3 z=0,2 x+5 y+6 z=0
$$

b) Given, let $Y=\left[\begin{array}{lll}1 & 1 & 2 \\ 1 & 2 & 5 \\ 1 & 3 & 3\end{array}\right] X$. Find $X=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ if $Y=\left[\begin{array}{l}2 \\ 0 \\ 5\end{array}\right]$

OR

c) If $\lambda_{1}, \lambda_{2},----\lambda_{\mathrm{n}}$ are characteristics roots of an $\mathrm{n}-$ square matrix A and K is a scalar, then show that $K \lambda_{1}, K \lambda_{2},----K \lambda_{\mathrm{n}}$ are characteristic roots of KA .
d) Find the eigen values of the matrix.

$$
A=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

UNIT - III

3. a) Form the equation of the fourth degree whose roots are $3+i$ and $\sqrt{7}$.
b) Solve the equation $6 x^{3}-11 x^{2}-3 x+2=0$. The roots being in harmonic progression.

OR

c) Show that the same transformation removes both $2^{\text {nd }}$ and $4^{\text {th }}$ terms of the equation
d) Find the equation whose roots are the roots of $x^{4}-5 x^{3}+7 x^{2}-17 x+11=0$ each diminished by 4 .

UNIT - IV

4. a) Find the equation whose roots are the reciprocals of $x^{4}-3 x^{3}+7 x^{2}+5 x-2=0$
b) Solve by Cardon's method $x^{3}-15 x=126$.

OR

c) Solve the cubic equation by Cardon's method $x^{3}+6 x^{2}+9 x+4=0$.
d) Solve $x^{4}-3 x^{2}-42 x-40=0$ by Descartes method.
5. Solve any six.
a) If $A=\left[\begin{array}{ll}3 & 1 \\ 2 & 0\end{array}\right], B=\left[\begin{array}{cc}-1 & 2 \\ 1 & -1\end{array}\right]$ then find $|A B|$
b) Prove that matrix $\left[\begin{array}{cc}2 & 1 \\ -5 & 5\end{array}\right]$ is nonsingular.
c) Define homogenous system of linear equation.
d) Define row-rank and column rank of matrix.
e) If $f(x)=x^{3}-3 x+2=0$, then find the nature of roots of equation.
f) If α, β, γ are the roots of cubic equation $\mathrm{x}^{3}+\mathrm{px}^{2}+\mathrm{qx}+\mathrm{r}=0$ then find symmetric function $\sum \alpha^{2}$
g) Write general form of cubic equation.
h) Write a general form of biquadratic equation.

