B.Sc.- III (CBCS Pattern) Sem-V USMT11 - Mathematics-III - DSE : Matrices and Theory of Equation

P. Pages : 2 Time : Three Hours		2 ree Hours $* 1 2 2 6 *$	GUG/W/22/13117 Max. Marks : 60
Notes :		 2. Solve all the five question. 2. Que. No 1 to 4 has an alternative. Solve each question in full or it full. 3. All question carry equal marks. 	s alternative in
		UNIT – I	
1.	a)	Define, conjugate, Hermitian matrix, and symmetric matrix.	6
	b)	If A and B be two $m \times n$ and $n \times p$ matrices respectively then prove that. $(AB)^{T} = B^{T}A^{T}$. Where T for transpose.	6
		OR	
	c)	Reduce the matrix $A = \begin{bmatrix} 3 & 5 & 7 \\ 2 & 4 & 4 \\ 1 & 2 & 3 \end{bmatrix}$ to the normal form and find its rank.	6
	d)	Find the rank of matrix A by reducing to the normal form. $A = \begin{bmatrix} 1 & 1 & -1 & 1 \\ 1 & -1 & 2 & -1 \\ 3 & 1 & 0 & 1 \end{bmatrix}$	6
		UNIT – II	
2.	a)	Find all non – trival solution of $x - 2y + 3z = 0$, $2x + 5y + 6z = 0$	6
	b)	Given, let $Y = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 5 \\ 1 & 3 & 3 \end{bmatrix} X$. Find $X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ if $Y = \begin{bmatrix} 2 \\ 0 \\ 5 \end{bmatrix}$	6
		OR	
	c)	If $\lambda_1, \lambda_2,\lambda_n$ are characteristics roots of an n -square matrix A and then show that $K\lambda_1, K\lambda_2,K\lambda_n$ are characteristic roots of KA.	K is a scalar, 6
	d)	Find the eigen values of the matrix. $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$	6

UNIT – III

3.	a)	Form the equation of the fourth degree whose roots are $3 + i$ and $\sqrt{7}$.	6	
	b)	Solve the equation $6x^3 - 11x^2 - 3x + 2 = 0$. The roots being in harmonic progression.	6	
		OB		
	c)	Show that the same transformation removes both 2^{nd} and 4^{th} terms of the equation	6	
	0)	$x^4 + 16x^3 + 83x^2 + 152x + 84 = 0$ and then find its root.	Ū	
	d)	Find the equation whose roots are the roots of $x^4 - 5x^3 + 7x^2 - 17x + 11 = 0$ each diminished by 4.	6	
4.		UNIT – IV		
	a)	Find the equation whose roots are the reciprocals of $x^4 - 3x^3 + 7x^2 + 5x - 2 = 0$	6	
	b)	Solve by Cardon's method $x^3 - 15x = 126$.	6	
		OR		
	c)	Solve the cubic equation by Cardon's method $x^3 + 6x^2 + 9x + 4 = 0$.	6	
	d)	Solve $x^4 - 3x^2 - 42x - 40 = 0$ by Descartes method.	6	
5.		Solve anv six.		
		a) If $A = \begin{bmatrix} 3 & 1 \\ 2 & 0 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}$ then find $ AB $	2	
		b) Prove that matrix $\begin{bmatrix} 2 & 1 \\ -5 & 5 \end{bmatrix}$ is nonsingular.	2	
		c) Define homogenous system of linear equation.	2	
		d) Define row-rank and column rank of matrix.	2	
		e) If $f(x) = x^3 - 3x + 2 = 0$, then find the nature of roots of equation.	2	
		f) If α , β , γ are the roots of cubic equation $x^3 + px^2 + qx + r = 0$ then find symmetric function $\sum \alpha^2$	2	
		g) Write general form of cubic equation.	2	
		h) Write a general form of biquadratic equation.	2	
