B.Sc. (CBCS Pattern) Sem-V USMT10 - Mathematics DSE-II : Mechanics

P. Pages : 2

Time : Three Hours

* 1 2 2 5 *

GUG/W/22/13116

Max. Marks: 60

6

Notes : 1. Solve all **five** questions.

2. Each questions carries equal marks.

UNIT- I

1. a) The velocities of a particle along and perpendicular to the radius vector from a fixed origin are λr^2 and $\mu \theta^2$. Show that the equation to the path is $\frac{\lambda}{\theta} = \frac{\mu}{2r^2} + C$ and component

accelerations are $2\lambda^2 r^3 - \mu^2 \frac{\theta^4}{r}$ and $\lambda \mu r \theta^2 + 2\mu^2 \frac{\theta^3}{r}$

b) A particle moves along a circle $r = 2a \cos \theta$ in such a way that its acceleration towards the **6** origin is always zero. Prove that $d\theta = 2$ $d\theta$

 $\frac{d\omega}{dt} = -2\omega^2 \cot\theta \text{ where } \omega = \frac{d\theta}{dt}$

OR

- c) Prove that if the tangential and normal acceleration of a particle describing a plane curve **6** be constant throughout the motion, the angle ψ which the direction of motion turns in time t is given by $\Psi = a \log (1+Bt)$
- d) The position of a particle moving in a straight line is given by $x = a \cos nt + b \sin nt$. Prove 6 that it executes SHM of period $\frac{2\pi}{n}$ and amplitude $\sqrt{a^2 + b^2}$

UNIT – II

- 2. a) If the forces acting on the particle are conservative, then prove that the total energy of the 6 particle is conserved.
 - b) Prove that the centre of mass of the particles moves as if the external forces were acting on the mass of the system concentrated at the centre of mass.

OR

- c) If the total external force on the system of particles is zero then prove that the total linear **6** momentum is conserved.
- d) Prove that the magnitude R of the position vector for the centre of mass from an arbitrary **6** origin is given by

$$M^2 R^2 = M \sum_i m_i \overline{r_i}^2 - \frac{1}{2} \sum_{i,j} m_i m_j \overline{r_{ij}}^2$$

GUG/W/22/13116

1

UNIT – III

- 3. a) Prove that the virtual work on a mechanical system (for which the net virtual work of the forces of constraint vanishes) by the applied forces and the reversed effective forces is zero.
 b) If L is a Lagrangian for a system of n degrees of freedom satisfying Lagrange's equations, 6 show by direct substitution that L'=L+ dF/dt, F=F(q₁,q₂,---q_n,t) also satisfies Lagrange's equations. Where F is any arbitrary but differentiable function of its argument. OR
 c) A particle moves in a plane under the influence of a force acting towards a centre of force 6
 - whose magnitude is $F = \frac{1}{r^2} \left[1 \frac{\dot{r}^2 2\ddot{r} r}{c^2} \right]$, where r is the distance of the particle to the

centre of force. Find the generalized potential that will result in such a force.

d) Prove that the rate of energy dissipation due to friction is 2R, where R is the Rayleigh's 6 dissipation function.

UNIT – IV

4.	a)	Prove that the problem of motion of two masses interacting only with one another always be reduced to a problem of the motion of single mass.	6
	b)	Prove that for a central force field F, the path of a particle of mass m is given by	6
		$\frac{d^2 u}{d\theta^2} + u = -\frac{m}{h^2 u^2} F\left(\frac{1}{u}\right), \qquad u = \frac{1}{r}$	
		OR	
	c)	For a central force field, show that Kepler's second law is a consequence of the conservation of angular momentum.	6
	d)	For a system moving in a finite region of space with finite velocity, the time average of K.E. is equal to the virial of the system.	6
5.		Solve any six.	
		a) Find the radial components of acceleration of a moving particle in a circular path radius a.	2
		b) Define frequency	2 2
		c) Prove that $\overline{N} = \dot{\overline{M}}$	2
		Where \overline{N} is moment of force & \overline{M} is angular momentum.	
		d) Write definition of centre of mass.	2 2
		e) Prove that the force of constraint does no work in any possible displacement.	2
		f) Write Lagrange's equations of motion for conservative system from D'Alembert's principle.	2
		g) Prove that a central force motion is a motion in a plane.	2
		h) Define potential well.	2
