B.Sc. (CBCS Pattern) Sem-V

USMT10 - Mathematics DSE-II : Mechanics
P. Pages : 2

Time : Three Hours

Max. Marks : 60

Notes: 1. Solve all five questions.
2. Each questions carries equal marks.

UNIT- I

1. a) The velocities of a particle along and perpendicular to the radius vector from a fixed origin are λr^{2} and $\mu \theta^{2}$. Show that the equation to the path is $\frac{\lambda}{\theta}=\frac{\mu}{2 r^{2}}+C$ and component accelerations are $2 \lambda^{2} \mathrm{r}^{3}-\mu^{2} \frac{\theta^{4}}{\mathrm{r}}$ and $\lambda \mu \mathrm{r} \theta^{2}+2 \mu^{2} \frac{\theta^{3}}{\mathrm{r}}$
b) A particle moves along a circle $r=2 a \cos \theta$ in such a way that its acceleration towards the origin is always zero.
Prove that
$\frac{\mathrm{d} \omega}{\mathrm{dt}}=-2 \omega^{2} \cot \theta$ where $\omega=\frac{\mathrm{d} \theta}{\mathrm{dt}}$

OR

c) Prove that if the tangential and normal acceleration of a particle describing a plane curve be constant throughout the motion, the angle ψ which the direction of motion turns in time t is given by $\Psi=\mathrm{a} \log (1+\mathrm{Bt})$
d) The position of a particle moving in a straight line is given by $x=a \cos n t+b \sin n t$. Prove that it executes SHM of period $2 \pi / \mathrm{n}$ and amplitude $\sqrt{\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)}$

UNIT - II

2. a) If the forces acting on the particle are conservative, then prove that the total energy of the particle is conserved.
b) Prove that the centre of mass of the particles moves as if the external forces were acting on the mass of the system concentrated at the centre of mass.

OR

c) If the total external force on the system of particles is zero then prove that the total linear momentum is conserved.
d) Prove that the magnitude R of the position vector for the centre of mass from an arbitrary origin is given by

$$
\mathrm{M}^{2} \mathrm{R}^{2}=\mathrm{M} \sum_{\mathrm{i}} \mathrm{~m}_{\mathrm{i}} \overline{\mathrm{r}}_{\mathrm{i}}^{2}-\frac{1}{2} \sum_{\mathrm{i}, \mathrm{j}} \mathrm{~m}_{\mathrm{i}} \mathrm{~m}_{\mathrm{j}} \overline{\mathrm{r}}_{\mathrm{ij}}^{2}
$$

3. a) Prove that the virtual work on a mechanical system (for which the net virtual work of the forces of constraint vanishes) by the applied forces and the reversed effective forces is zero.
b) If L is a Lagrangian for a system of n degrees of freedom satisfying Lagrange's equations, show by direct substitution that $L^{\prime}=L+\frac{d F}{d t}, F=F\left(q_{1}, q_{2},---q_{n}, t\right)$ also satisfies Lagrange's equations. Where F is any arbitrary but differentiable function of its argument.

> OR
c) A particle moves in a plane under the influence of a force acting towards a centre of force whose magnitude is $F=\frac{1}{r^{2}}\left[1-\frac{\dot{\mathrm{r}}^{2}-2 \ddot{\mathrm{r}} \mathrm{r}}{\mathrm{c}^{2}}\right]$, where r is the distance of the particle to the centre of force. Find the generalized potential that will result in such a force.
d) Prove that the rate of energy dissipation due to friction is $2 R$, where R is the Rayleigh's dissipation function.

UNIT - IV

4. a) Prove that the problem of motion of two masses interacting only with one another always be reduced to a problem of the motion of single mass.
b) Prove that for a central force field F , the path of a particle of mass m is given by

$$
\frac{\mathrm{d}^{2} \mathrm{u}}{\mathrm{~d} \theta^{2}}+\mathrm{u}=-\frac{\mathrm{m}}{\mathrm{~h}^{2} \mathrm{u}^{2}} \mathrm{~F}(1 / \mathrm{u}), \quad \mathrm{u}=\frac{1}{\mathrm{r}}
$$

OR

c) For a central force field, show that Kepler's second law is a consequence of the conservation of angular momentum.
d) For a system moving in a finite region of space with finite velocity, the time average of K.E. is equal to the virial of the system.

5. Solve any six.

a) Find the radial components of acceleration of a moving particle in a circular path radius a.
b) Define frequency
c) Prove that $\overline{\mathrm{N}}=\dot{\overline{\mathrm{M}}}$

Where $\overline{\mathrm{N}}$ is moment of force \& $\overline{\mathrm{M}}$ is angular momentum.
d) Write definition of centre of mass.
e) Prove that the force of constraint does no work in any possible displacement.
f) Write Lagrange's equations of motion for conservative system from D'Alembert's
 principle.
g) Prove that a central force motion is a motion in a plane.
h) Define potential well.

