B.Sc.- III (CBCS Pattern) Sem-V
 USMT09 - Mathematics Paper-I - DSE : Linear Algebra

P. Pages : 2

GUG/W/22/13115
Time : Three Hours

Max. Marks : 60

Notes : 1. Solve all the five questions.
2. Question No. 1 to 4 has an alternative. Solve each question in full or its alternative in full.
3. All questions carry equal marks.

1. a) Let V be a vector space over F . Then prove that
i) $\alpha 0=0, \forall \alpha \in \mathrm{~F}$
ii) $\quad 0 \mathrm{~V}=0, \forall \mathrm{v} \in \mathrm{V}$
iii) $(-\alpha) \mathrm{V}=-(\alpha \mathrm{V}), \forall \alpha \in \mathrm{F}, \forall \mathrm{v} \in \mathrm{V}$
b) Let U , W be subspace of vector space $\mathrm{V}(\mathrm{F})$. Prove that UvW is subspace of V iff $\mathrm{U} \subseteq \mathrm{W}$ or $\mathrm{W} \subseteq \mathrm{U}$.

OR

c) If $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \ldots . ., \mathrm{V}_{\mathrm{n}}$ is a basis of V or span V over F and $\mathrm{W}_{1}, \mathrm{~W}_{2}, \ldots \ldots, \mathrm{~W}_{\mathrm{m}} \in \mathrm{V}$ are linearly independent over F , then prove that $\mathrm{m} \leq \mathrm{n}$.
d) Let W be subspace of a finite dimensional vector space V . Then prove that W is finite dimensional.
2. a) Let U, V be vector spaces over the same field F. Then prove that a function $T: U \rightarrow V$ is linear iff $\mathrm{T}(\alpha \mathrm{u}+\mathrm{v})=\alpha \cdot \mathrm{T}(\mathrm{u})+\mathrm{TV} \forall \mathrm{u}, \mathrm{v} \in \mathrm{V}$ and $\alpha \in \mathrm{F}$.
b) Let a mapping $T: V_{2} \rightarrow V_{2}$ be defined by $T(x, y)=\left(x^{\prime}, y^{\prime}\right)$ where $x^{\prime}=x \cos \theta-y \sin \theta$, $y^{\prime}=x \sin \theta+y \cos \theta$. Then show that T is linear map.

OR

c) Let $T: U \rightarrow V$ be linear map, then prove that $R(T)$ is subspace of V.
d) Show that the linear map $T: V_{3}-V_{3}$ defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}+x_{3}, x_{2}+x_{3}, x_{3}\right)$ is non singular and find its inverse.
3. a) Let V be a finite dimensional vector space over F and $V(\neq 0) \in V$. Then prove that there exists $\mathrm{f} \in \hat{\mathrm{V}}$ such that $\mathrm{f}(\mathrm{V}) \neq 0$.
b) For a finite dimensional vector space V, Show that \hat{V} is a separating family.

OR

c) Let $T: R^{2} \rightarrow R^{2}$ be linear map defined by $T(x, y)=(0, y)$. If $\lambda \in R$ is on eigen value of T, then $\exists(x, y) \neq(0,0)$ in R^{2} such that $T(x, y)=\lambda(x, y)$ find the value of λ and eigen vector of T .
d) Let V be the space of all real valued continuous function of real variable. Define
$T: V \rightarrow V$ by $(T f)(x)=\int_{0}^{x} f(t) d t, \forall f \in V, x \in R$. Show that T has no eigen value.
4. a) Let V be set of all continuous complex - valued functions on the closed interval $[0,1]$.

If $f(t), g(t) \in V$, define $(f(t), g(t))=\int_{0}^{1} f(t) \bar{g}(t) d t$. Show that this defines inner product on V.
b) Let V be an inner product space over F. if $u, v \in V$ then prove that $|(\mathrm{u}, \mathrm{v})| \leq\|\mathrm{u}\| \cdot\|\mathrm{v}\|$

OR

c) Let $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$ be orthogonal set. Then show that

$$
\left\|\mathrm{x}_{1}+\mathrm{x}_{2}+\ldots .+\mathrm{x}_{\mathrm{n}}\right\|^{2}=\left\|\mathrm{x}_{1}\right\|^{2}+\left\|\mathrm{x}_{2}\right\|^{2}+\ldots . . .\left\|\mathrm{x}_{\mathrm{n}}\right\|^{2}
$$

d) If V be a finite dimensional inner product space and W is subspace of V then prove that $\left(W^{\perp}\right)^{\perp}=W$.

5. Solve any six.

a) Let V be a vector space over F . Then prove that $0 \mathrm{~V}=0, \forall \mathrm{v} \in \mathrm{V}$.
b) Define a basis of a vector space.
c) Show that $T: R^{2} \rightarrow R^{2}$, defined by $T(x, y)=(x+1, y+2)$ is not a linear map.
d) Define a Null space in vector space.
e) Define a dual space of vector space V.
f) Let $\lambda \neq 0$ be an eigen value of an invertiable linear transformation $T \in L(V)$. Show that λ^{-1} is an eigen value of T^{-1}.
g) Define a orthogonal complement in inner product space.
h) Prove that in inner product space

$$
\mathrm{W} \cap \mathrm{~W}^{\perp}=\{0\}
$$

