B.Sc.- III (CBCS Pattern) Sem-V USMT09 - Mathematics Paper-I - DSE : Linear Algebra

P. Pages: 2 GUG/W/22/13115 Time : Three Hours Max. Marks: 60 Notes : 1. Solve all the five questions. 2. Question No. 1 to 4 has an alternative. Solve each question in full or its alternative in full. 3. All questions carry equal marks. 1. Let V be a vector space over F. Then prove that 6 a) $\alpha 0 = 0, \forall \alpha \in F$ i) $0V = 0, \forall v \in V$ ii) iii) $(-\alpha)V = -(\alpha V), \forall \alpha \in F, \forall v \in V$ b) Let U, W be subspace of vector space V(F). Prove that UvW is subspace of V iff 6 $U \subseteq W$ or $W \subseteq U$. OR If $V_1, V_2, V_3, \dots, V_n$ is a basis of V or span V over F and $W_1, W_2, \dots, W_m \in V$ are linearly c) 6 independent over F, then prove that $m \le n$. Let W be subspace of a finite dimensional vector space V. Then prove that W is finite d) 6 dimensional. 2. Let U, V be vector spaces over the same field F. Then prove that a function $T: U \rightarrow V$ is 6 a) linear iff $T(\alpha u + v) = \alpha \cdot T(u) + TV \quad \forall u, v \in v \text{ and } \alpha \in F.$ Let a mapping $T: V_2 \to V_2$ be defined by T(x, y) = (x', y') where $x' = x \cos \theta - y \sin \theta$, b) 6 $y' = x \sin \theta + y \cos \theta$. Then show that T is linear map. OR Let $T: U \rightarrow V$ be linear map, then prove that R(T) is subspace of V. 6 c) Show that the linear map $T: V_3 - V_3$ defined by $T(x_1, x_2, x_3) = (x_1 + x_2 + x_3, x_2 + x_3, x_3)$ d) 6 is non singular and find its inverse. Let V be a finite dimensional vector space over F and $V(\neq 0) \in V$. Then prove that there 3. 6 a) exists $f \in \hat{V}$ such that $f(V) \neq 0$. b) 6 For a finite dimensional vector space V, Show that $\stackrel{\wedge}{V}$ is a separating family.

c) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be linear map defined by T(x, y) = (0, y). If $\lambda \in \mathbb{R}$ is on eigen value of T, then $\exists (x, y) \neq (0, 0)$ in \mathbb{R}^2 such that $T(x, y) = \lambda(x, y)$ find the value of λ and eigen vector of T.

6

6

- d) Let V be the space of all real valued continuous function of real variable. Define $T: V \rightarrow V$ by $(Tf)(x) = \int_{0}^{x} f(t) dt, \forall f \in V, x \in R$. Show that T has no eigen value.
- 4. a) Let V be set of all continuous complex valued functions on the closed interval [0, 1]. 6 If $f(t), g(t) \in V$, define $(f(t), g(t)) = \int_{0}^{1} f(t)\overline{g}(t) dt$. Show that this defines inner product on V.
 - b) Let V be an inner product space over F. if $u, v \in V$ then prove that $|(u, v)| \le ||u|| \cdot ||v||$

OR

c)	Let $\{x_1, x_2, x_3,, x_n\}$ be orthogonal set. Then show that	6
	$\ \mathbf{x}_1 + \mathbf{x}_2 + \dots + \mathbf{x}_n\ ^2 = \ \mathbf{x}_1\ ^2 + \ \mathbf{x}_2\ ^2 + \dots \ \mathbf{x}_n\ ^2$	

d) If V be a finite dimensional inner product space and W is subspace of V then prove that $(W^{\perp})^{\perp} = W$.

5. Solve any six.

a)	Let V be a vector space over F. Then prove that $0V = 0$, $\forall v \in V$.	2
b)	Define a basis of a vector space.	2
c)	Show that $T: \mathbb{R}^2 \to \mathbb{R}^2$, defined by $T(x, y) = (x+1, y+2)$ is not a linear map.	2
d)	Define a Null space in vector space.	2
e)	Define a dual space of vector space V.	2
f)	Let $\lambda \neq 0$ be an eigen value of an invertiable linear transformation $T \in L(V)$. Show that λ^{-1} is an eigen value of T^{-1} .	2
g)	Define a orthogonal complement in inner product space.	2
h)	Prove that in inner product space $\mathbf{W} \cap \mathbf{W}^{\perp} = \{0\}$	2
