Notes: 1. Solve all five questions.
2. All questions carry equal marks.

UNIT - I

1. a) Prove that, a nonempty subset U of a vector space V over field F is a subspace of V iff
i) $u+v \in U, \forall u, v \in U$
ii) $\quad \alpha u \in U \forall \alpha \in F, u \in U$
b) Prove that an arbitrary intersection of subspaces of a vector space is a subspace.

OR

c) Prove that the set $\beta=\{(1,1,1)(1,-1,1)(0,1,1)\}$ is a basis of V_{3}.
d) Let W be a subspace of finite dimensional vector space V . Then prove that W is finite dimensional.

UNIT - II

2. a) Let U, V be vector spaces over a field F and $\mathrm{T}: \mathrm{U} \rightarrow \mathrm{V}$ be a linear map. Then prove that
i) $\quad \mathrm{T}(0)=0$
ii) $\quad \mathrm{T}(-\mathrm{u})=-\mathrm{Tu} \forall \mathrm{n} \in \mathrm{U}$
iii) $\mathrm{T}\left(\alpha_{1} \mathrm{u}_{1}+\alpha_{2} \mathrm{u}_{2}+\ldots . .+\alpha_{\mathrm{n}} \mathrm{u}_{\mathrm{n}}\right)=\alpha_{1} \mathrm{Tu}_{1}+\alpha_{2} \mathrm{Tu}_{2}+\ldots \ldots .+\alpha_{\mathrm{n}} \mathrm{T}\left(\mathrm{u}_{\mathrm{n}}\right)$ $\forall \mathrm{u}_{\mathrm{i}} \in \mathrm{U}, \alpha_{\mathrm{i}} \in \mathrm{F}, \mathrm{i}=1,2 \ldots \mathrm{n} \mathrm{n} \in \mathrm{N}$.
b) Let a mapping $T: V_{2} \rightarrow V_{2}$ be defined by $T(x, y)=\left(x^{\prime}, y^{\prime}\right)$ where $x^{\prime}=x \cos \theta-y \sin \theta, y^{\prime}=x \sin \theta+y \cos \theta$ show that T is a linear map.

OR

c) Let $\mathrm{T}: \mathrm{U} \rightarrow \mathrm{V}$ be a linear map then prove that
i) $\quad R(T)$ is a subspace of V
ii) $\quad \mathrm{N}(\mathrm{T})$ is a subspace of U
d) Show that the linear map $T: v_{3} \rightarrow v_{3}$ defined by
$T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}+x_{3}, x_{2}+x_{3}, x_{3}\right)$ is non singular and find its inverse.

UNIT - III

3. a) Let V be the finite dimensional vector space over F then prove that $V \approx \hat{\hat{V}}$.
b) Let w_{1} and w_{2} are two subspaces of finite dimensional vector space V then prove that $A\left(w_{1}+w_{2}\right)=A\left(w_{1}\right) \cap A\left(w_{2}\right)$ where $A\left(w_{1}\right)$ and $A\left(w_{2}\right)$ are annihilator of w_{1}, w_{2}.
c) Let V be the vector space of all real valued continuous function of real variable.

Define $T: V \rightarrow V$ by $(T F)(x)=\int_{0}^{x} f(t) d t, \forall f \in v, x \in R$. Show that T has no eigen value.
d) Prove that the element $\lambda \in f$ is CR of $T \in L(v)$ iff for some $v(v \neq 0) \in v, T_{V}=\lambda_{v}$.

UNIT - IV

4. a) Let V be an inner product space over F . If $\mathrm{u}, \mathrm{v}, \in \mathrm{V}$ then prove that $|(u, v)| \leq\|u\|\|v\|$.
b) Let $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots . \mathrm{x}_{\mathrm{n}}\right\}$ be an orthogonal set then prove that $\left\|x_{1}+x_{2}+\ldots .+x_{n}\right\|^{2}=\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}+\ldots . .+\left\|x_{n}\right\|^{2}$.

OR

c) If $\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots . . \mathrm{w}_{\mathrm{m}}\right\}$ is an orthonormal set in V then prove that
$\sum_{i=1}^{m}\left|\left(w_{1}, v\right)\right|^{2} \leq\|v\|^{2}$ for $v \in V$
d) Using Gram-Schmidt orthogonalization process, orthonormalize the L.I. subset $\{(1,1,1),(0,1,1),(0,0,1)\}$ of V_{3}.
5. Solve any 6 questions.
a) Let V be a vector space over F then prove that $\alpha \cdot 0=0, \forall \alpha \in \mathrm{~F}$.
b) If S and T are subsets of a vector space V then prove that $\mathrm{S} \subseteq \mathrm{T} \Rightarrow \mathrm{L}(\mathrm{s}) \subseteq \mathrm{L}(\mathrm{T})$.
c) Let $T: U \rightarrow V$ be a linear map then prove that T is one-one $\Leftrightarrow N(T)$ is a zero subspace of U .
d) Let $T: V_{2} \rightarrow V_{3}$ be a linear map defined by $T\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}, x_{2}-x_{1},-x_{1}\right)$ show that T is 1-1.
e) Define a second dual vector space.
f) Let $\lambda \neq 0$ be an eigen value of an invertible linear transformation T show that λ^{-1} is an eigen value of T^{-1}.
g) Prove that $\mathrm{W} \cap \mathrm{W}^{1}=\{0\}$.
h) Prove that, If V is a inner product space over F then. $(u, \alpha v+\beta w)=\bar{\alpha}(u, v)+\bar{\beta}(u, w) \forall u, v, w \in V \alpha \beta \in F$.

