B.Sc. (CBCS Pattern) Semester - V

USMT09 - DSE-I - Mathematics-I (Linear Algebra) GUG/S/23/13115

P. Pages: 2 Time: Three Hours			GUG/S/23/13115 Max. Marks : 60	
	Not	tes: 1. Solve all five questions. 2. All questions carry equal marks.		-
		UNIT - I		
1.	a)	Prove that, a nonempty subset U of a vector space V over field F is a subspati) $u+v\in U, \forall u,v\in U$ ii) $\alpha u\in U \ \forall \ \alpha\in F,\ u\in U$	ice of V iff	6
	b)	Prove that an arbitrary intersection of subspaces of a vector space is a subsp	ace.	6
		OR		
	c)	Prove that the set $\beta = \{(1,1,1)(1,-1,1)(0,1,1)\}$ is a basis of V_3 .		6
	d)	Let W be a subspace of finite dimensional vector space V. Then prove to dimensional.	nat W is finite	6
		UNIT - II		
2.	a)	Let U, V be vector spaces over a field F and $T:U\to V$ be a linear map. The iiii $T(0)=0$ iii $T(-u)=-Tu\ \forall\ n\in U$ iii $T(\alpha_1\ u_1+\alpha_2\ u_2++\alpha_n\ u_n)=\alpha_1Tu_1+\alpha_2Tu_2++\alpha_nT(u_n)$ $\forall\ u_i\in U,\ \alpha_i\in F,\ i=1,2n\ n\in N$.	en prove that	6
	b)	Let a mapping $T: V_2 \to V_2$ be defined by $T(x, y) = (x', y')$ where $x' = x \cos \theta - y \sin \theta$, $y' = x \sin \theta + y \cos \theta$ show that T is a linear map.		6
		OR		
	c)	Let $T: U \rightarrow V$ be a linear map then prove that i) $R(T)$ is a subspace of V ii) $N(T)$ is a subspace of U		6
	d)	Show that the linear map $T: v_3 \rightarrow v_3$ defined by $T(x_1, x_2, x_3) = (x_1 + x_2 + x_3, x_2 + x_3, x_3)$ is non singular and find its inverse.		6
		UNIT - III		
3.	a)	Let V be the finite dimensional vector space over F then prove that $V\approx\hat{\hat{V}}$.		6
	b)	Let w_1 and w_2 are two subspaces of finite dimensional vector space V then $A(w_1+w_2)=A(w_1)\cap A(w_2)$ where $A(w_1)$ and $A(w_2)$ are annihilator \mathbf{OR}	i prove that	6

- c) Let V be the vector space of all real valued continuous function of real variable. 6

 Define $T: V \to V$ by $(TF)(x) = \int_0^x f(t) dt$, $\forall f \in V$, $x \in R$. Show that T has no eigen value.
- d) Prove that the element $\lambda \in f$ is CR of $T \in L(v)$ iff for some $v(v \neq 0) \in v$, $T_v = \lambda_v$.

UNIT - IV

- **4.** a) Let V be an inner product space over F. If $u, v, \in V$ then prove that $|(u,v)| \leq \|u\| \ \|v\|.$
 - b) Let $\{x_1, x_2, x_n\}$ be an orthogonal set then prove that $\|x_1 + x_2 + + x_n\|^2 = \|x_1\|^2 + \|x_2\|^2 + + \|x_n\|^2.$

OR

- c) If $\{w_1, w_2,, w_m\}$ is an orthonormal set in V then prove that $\sum_{i=1}^m \left|\left(w_{1,v}\right)\right|^2 \leq \|v\|^2 \text{ for } v \in V$
- d) Using Gram-Schmidt orthogonalization process, orthonormalize the L.I. subset $\{(1,1,1),\,(0,1,1),\,(0,0,1)\} \text{ of } V_3.$
- 5. Solve any 6 questions.
 - a) Let V be a vector space over F then prove that $\alpha \cdot 0 = 0$, $\forall \alpha \in F$.
 - b) If S and T are subsets of a vector space V then prove that $S \subseteq T \Rightarrow L(s) \subseteq L(T)$.
 - c) Let $T: U \to V$ be a linear map then prove that T is one-one $\Leftrightarrow N(T)$ is a zero subspace of U.
 - d) Let $T: V_2 \rightarrow V_3$ be a linear map defined by $T(x_1, x_2) = (x_1 x_2, x_2 x_1, -x_1)$ show that T is 1-1.
 - e) Define a second dual vector space.
 - f) Let $\lambda \neq 0$ be an eigen value of an invertible linear transformation T show that λ^{-1} is an eigen value of T^{-1} .
 - g) Prove that $W \cap W^1 = \{0\}$.
 - h) Prove that, If V is a inner product space over F then. $(u, \alpha v + \beta w) = \overline{\alpha}(u, v) + \overline{\beta}(u, w) \forall u, v, w \in V \ \alpha \ \beta \in F.$
