B.Sc. T.Y. (CBCS Pattern) Sem-V USDSEPHT10 - Physics Paper-II : Solid State Physics

P. Pages: 2 GUG/W/22/13094 Time : Three Hours Max. Marks: 50 Notes : 1. All questions are compulsory. 2. Draw neat and well labelled diagrams wherever necessary. Either: 1. i) State and Derive Bragg's law of X-ray diffraction in crystal. How Bragg's law helps 5 a) to determine crystal structure of materials? Draw (110), (011) and (001) planes in simple cubic unit cell. 3 ii) The spacing between successive planes in NaCl is 2.82A°. X-rays incident on the 2 iii) surface of the crystal is found to give rise to first order Bragg reflection at glancing angle 7.7°. Calculate the wavelength of X-rays'. OR b) What are Miller Indices? How are they obtained? $2^{1/2}$ a) $2^{1/2}$ Explain concept of Reciprocal Lattice. b) Give the differences between Amorphous and Crystalline material. $2^{1/2}$ c) $2^{1/2}$ Calculate the angle of diffraction for X-rays having wavelength 1.54A° in different d) orders 1,2,3, if the interplanar distance is 2.67A°. Either: What is diamagnetic substance? Explain the concept of magnetic susceptibility. 3 2. a) i) 5 ii) Discuss Langevin's theory of diamagnetism and obtain expression for diamagnetic susceptibility. The maximum value of the permeability of the material is 0.126 N/A^2 . What is the 2 iii) relative permeability and magnetic susceptibility of the medium (Permeability offree space = $4\pi \times 10^{-7}$ hennery/m. OR b) a) Give the Weiss theory of ferromagnetism. $2^{1/2}$ Distinguish between diamagnetic, paramagnetic and ferromagnetic substances on the $2^{1/2}$ b) basis of their behavior in the presence of external magnetic field. Prove that susceptibility χ_p of paramagnetic substances is inversely proportional to $2^{1/2}$ c) absolute temperature. A magnetic material has a magnetization of 2300A/m and produces a flux density of $2^{1/2}$ d) 0.00314 Wb/m². Calculate magnetizing force and relative permeability of the material.

Either:

3.	a)	i)	Obtain Clausius-Mosotti Equation for dielectrics.	4
		ii)	Write a short note on polar and non-polar dielectrics.	3

iii) The atomic weight and density of sulphur are 32 and 2.08 gm/cm3 respectively. The electronic polarizability of the atom is 3.28x10⁻⁴⁰ F.m². If sulphur solid has cubical symmetry, what will be its relative dielectric constant?

OR

b)	a)	Derive an expression representing the relation between three electric vectors E, D	21/2
		and P.	
	b)	Explain the concept of electric polarizability on the basis of classical theory.	21/2
	c)	Derive Langevin – Debye equation.	21/2
	d)	Calculate the electronic polarizability of argon atom.	21/2
		[Given $\varepsilon_r = 1.0024$ at NTP and N = 2.7x10 ²⁵ / m ³ .]	

Either:

4.

b)

a)	i)	Explain in detail Kroning – Penny model.	5
	ii)	Explain Meissner effect in superconductor.	3
	iii)	An n-type germanium sample has a donor density of 10^{21} m ³ . It is arranged in a Hall experiment having magnetic field of 0.5T and the current density is 500 A/m ³ . Find the Hall voltage if the sample is 3mm wide.	2

OR

a)	What is Hall Effect? Explain the term hall coefficient and hall mobility.	21/2
b)	Discuss Conductor, Semiconductors and insulators on the basis of energy band diagram.	21/2
c)	Explain the term superconductivity. What are the Type-I and Type-II superconductor?	21/2
d)	Find the critical field in Pb at T = 4.2K. Here $H_c(0) = 0.0803 Wb / m^2$ for Pb.	21/2

5. Solve **any ten** of the followings:

a)	Give at least two applications of Bragg's Law.	1
b)	What are Primitive and Non-primitive unit cell?	1
c)	What is Brillouin Zone?	1
d)	State Curie law of paramagnetism.	1
e)	Why B-H curve is important to study magnetism?	1
f)	What is Hysteresis loss?	1
g)	Define dielectric susceptibility?	1
h)	Give applications of dielectric substances?	1
i)	What do you mean by dielectric loss?	1
j)	What is importance of fermi energy?	1
k)	Give at least 2 applications of Superconductivity.	1
1)	What is significance of critical temperature Superconductivity?	1
