B.Sc. T.Y. (CBCS Pattern) Sem-V USDSEPHT09 - Physics Paper-I : Elements of Modern Physics

P. Pages : 2 Time : Three Hours			Hours * 3 6 1 8 *	GUG/W/22/13093 Max. Marks : 50		
	Note	es :	All questions are compulsory. Draw neat and well labelled diagrams wherever necessary.			
	Either:		her:			
1.	a)	i)	State and explain Heisenberg's uncertainty principle.	2		
		ii)	State de-Broglie's hypothesis for matter waves. Express de-Broglie's terms of energy.	equation in 2		
		iii)	Show that electron cannot be present inside nucleus on the basis of U principle.	Incertainty 3		
		iv)	Calculate the uncertainty in the momentum and velocity of an electro of length 1A°.	on confine in box 3		
			OR			
	b)	a)	Describe in detail Davisson-Germer experiment to verify de-Broglie	hypothesis. $2^{1/2}$		
		b)	What are the salient features of black body radiation spectrum?	21/2		
		c)	Explain the concept of wave particle duality.	21/2		
		d)	An electron of mass 9.1×10^{-3i} kg has a speed of 1 km/s with an acc Calculate the uncertainty with which the position of electron can be 1	•		
	Either:					
2.	a)	i)	Obtain an expression for quantized energy for an electron trapped in potential well of infinite height of width L.	one dimensional 4		
		ii)	What is eigen function and eigen value? Explain them with example.	3		
		iii)	Electron of energy 2.0eV are incident on a barrier 4.0eV high and 0.4 transmission probability.	nm wide. Find 3		
	OR					
	b)	a)	Explain in short the phenomenon of the tunneling that occurs when a particles are incident on a potential barrier of finite width.	beam of 2¹/ ₂		
		b)	State the conditions for a wave function to be well behaved.	21/2		
		c)	State and Explain Momentum and Energy operators in quantum mech	hanics. 2¹/ 2		
		d)	Explain stationary states.	21/2		

Either:

		Eitl	her:		
3.	a)	i)	Explain in detail Gamow's theory of α -decay.	5	
		ii)	Explain the different properties of nucleus.	2	
		iii)	Calculate binding energy per nucleon of deuteron.	3	
			Given $m_n = 1.675 \times 10^{-27} \text{ kg}, m_p = 1.672 \times 10^{-27} \text{ kg},$		
			$m_D = 3.343 \times 10^{-27} \text{ kg}, C = 3 \times 10^8 \text{ m/sec}.$		
			OR		
	b)	a)	What is α -decay? Give its characteristics.	21/2	
		b)	Obtain an expression for Geiger – Nuttal Law from Gamow's theory.	21/2	
		c)	What is binding – energy? Explain how the stability of nucleus can be checked with the help of $B - E$ per nucleon curve.	21/2	
		d)	The half life of a radioactive element is 10 days. How long will it take for 90% of the sample to disintegrate?	21/2	
Either:					
4.	a)	i)	Explain in detail construction and working of nuclear reactor.	5	
		ii)	Explain β -ray spectrum.	2	
		iii)	Calculate the energy liberated when a helium nucleus is formed by fusion of two	3	
			deuterium nuclei. The mass of $H_2 = 2.014102$ amu and mass of ${}^{4}_{2}$ He = 4.002604 amu		
OR					
	b)	a)	Explain the various stages in the fission process as given by the liquid drop model.	21/2	
		b)	What is chain reaction? How is it obtained?	21/2	
		c)	Explain why fusion reactions are called thermonuclear reactions?	21/2	
		d)	Calculate the amount of energy released when 1 kg of ${}^{935}_{92}$ U undergoes fission reaction.	21/2	
5.		Sol	ve any ten of the following.		

5. Solve **any ten** of the following.

a) Give at least any two properties of photons.	1
b	b) State the properties of matter waves.	1
с	Write down relation for Energy-time uncertainty.	1
d	Write Schrodinger's time independent and time dependent wave equations.	1
e	Explain Physical significance of psi.	1
f) What is an operator?	1
g) Define range of α -particle.	1
h	Write down important characteristics of the nuclear forces.	1
i) Define mean life & half – life.	1
j) What is 'Stellar energy'?	1
k	x) What is Massbouereffect?	1
1) State Geiger – Nuttle law.	1
