B.Sc. T.Y. (CBCS Pattern) Sem-V

USDSEPHT09 - Physics-I : Elements of Modern Physics

P. Pages: 3 Time: Three Hours			Hours * 3 8 3 0 *	GUG/W/22/13093 Max. Marks : 50					
			1 ,						
		Either:							
1.	a)	i)	Describe Davission & Germer's experiments. How does it prove particles.	the wave nature of 6					
		ii)	State & Explain De-Broglie's hypothesis.	2					
		iii)	Calculate De-Broglie's wavelength of proton which has K.E. of 1 (Given- $M_p = 1.67 \times 10^{-27}$ kg & $h = 6.62 \times 10^{-34}$ J.S.)	MeV. 2					
	OR								
	b)	a)	State and explain both Heisenberg's uncertainty principle.	21/2					
		b)	Explain the characteristics of Black body radiation.	21/2					
		c)	Show that electron do not exist inside the Nucleous.	21/2					
		d)	An electron confined to a box of length 10^{-10} m . Calculate minimized velocity. (Given- $M_e = 9 \times 10^{-31}$ kg)	num uncertainty in $2^{1/2}$					
		Eit	ther:						
2.	a)	i)	Write Schrodinger time independent wave equation for a free part 3 – dimensional rectangular box. Solve it to obtain the eigen value						
		ii)	What is well behaved wave function. State the condition for it.	2					
		iii)	Find the values of momentum & energy for an electron in a box of $n = 1$.	of length 1A° for 2					
			OR						
	b)	a)	What is eigen function & eigen value. Explain them with example	e. 2½					
		b)	State the postulate of quantum mechanics.	21/2					
		c)	Derive time independent Schrodinger equation for the matter way	ves. 2½					

- d) Find the eigen values of an operator $\frac{d^2}{dx^2}$ for the function
 - i) $\psi = \cos x$
 - ii) $\psi = e^{x}$

Either:

3. a) i) Explain Gamow's theory of α -decay in detail.

lain 3

ii) What do you mean by mass defect & binding energy of nucleus. Draw and explain the graph of binding energy per nucleon versus mass number.

2

5

 $2^{1/2}$

iii) Calculate the binding energy of an $\alpha-$ particle from the following data.

Mass of Helium nucleus = 4.001265 u

Mass of proton = 1.007276 u

Mass of neutron = 1.008665 u

And 1u = 931.5 MeV.

OR

b) a) What are nuclear forces. Discuss the properties of nuclear forces.

 $2^{1/2}$

b) Describe a few properties of nucleus.

 $2^{1/2}$

 $2^{1/2}$

c) Define mean life or average life period of a radioactive substance. How it is related to half life period of a radio active substance.

21/2

d) Calculate the time required for 10% of a sample of thorium to disintegrate. Assume the half life of thorium to be 1.4×10^{10} years.

Either:

4. a) i) What is β – decay. Explain three types of β – decay.

3

ii) Draw a neat diagram of a nuclear power reactor & explain its working.

5

iii) What is a chain reaction. Explain controlled chain reaction.

2

OR

b) a) What are difficulties involved in explaining β – decay spectrum. How these are eliminated.

21/2

b) What is γ – decay. Explain the origin of gamma ray. Discuss cobalt – 60 decay scheme.

21/2

c) Explain nuclear fission on the basis of liquid drop model.

21/2

		heavy nucleus and one neutron.				
		Mass of deuterium	= 2.01474 u			
		Mass of helium	= 4.00387 u			
		Mass of tritium	= 3.01700 u			
		Mass of neutron	= 1.00898 u			
		& $1 u = 931.5 \text{ MeV}.$				
5.	Sol	ve any ten of the following.				
	a)	What is block body?		1		
	b)	Write energy – time uncertainty pr	rinciple.	1		
	c)	What is the momentum of photon	of wavelength 6×10^{-7} m.	1		
	d)	What is free particle?		1		
	e)	e) What is normalized wave function.				
	f)	Write Schrodinger time dependent equation in 3 – Dimensions.				
	g)	Define range of α – particles.		1		
	h)	State law of radioactive decay.		1		
	i)	Define atomic mass unit (a.m.u.)		1		
	j)	What are different properties of ne	eutrino.	1		
	k)	What is nuclear fusion.		1		

Calculate the energy released in MeV when deuteron fuses with a tritium to form a

 $2^{1/2}$

1

1)

What is stellar energy.

d)