B.Sc. (CBCS Pattern) Sem-IV USMT08 - Mathematics-II Paper-VIII (Elementary Number Theory)

P. P Tim	ages : ie : Th	2 ree Hours $Max. M$	2/12015 Iarks : 60
	Not	es : 1. Solve all five questions. 2. All questions carry equal marks.	
		UNIT – I	
1.	a)	Prove that, the product of any m consecutive integers is divisible by m!	6
	b)	Prove that $\frac{3}{n}(n+1)(2n+1)$, $A \in \mathbb{Z}$.	6
		OR	
	c)	Prove that, no integers x, y exist satisfying $x + y = 100$ and $(x, y) = 3$.	6
	d)	Find the g.c.d. of 275 and 200 and express it in the form 275 $x + 200y$.	6
		UNIT – II	
2.	a)	Prove that every positive integer greater than one has at least one prime divisor.	6
	b)	Find the g. c.d. and ℓ .c.m. of a = 18900 and b = 17160 by writing each of the numbers a and b in prime factorization canonical form.	ı 6
		OR	
	c)	Prove that, for all positive integers n, $F_0, F_1, \dots, F_{n-1} = F_n - 2$.	6
	d)	Prove that, the Fermat number F_5 is divisible by 641 and hence is composite.	6
		UNIT – III	
3.	a)	Let $a_1, a_2, b_1, b_2 \in \mathbb{Z}$ such that $a_1 \equiv b_1 \pmod{m}$ and $a_2 \equiv b_2 \pmod{m}$, then prove that	6
		i) $(a_1 + a_2) \equiv (b_1 + b_2) \pmod{m}$	
		ii) $a_1 \cdot a_2 \equiv b_1 \cdot b_2 \pmod{m}$	
		iii) $c \cdot a_1 \equiv c \cdot b_1 \pmod{m}, c \in z$	
	b)	Prove that, if $a \equiv b \pmod{m}$ then $a^n \equiv b^n \pmod{m}, \forall n \in N$	6
		OR	

	c)	Find all solutions of $15x \equiv 12 \pmod{g}$.	6
	d)	Solve the system of three congruences $x \equiv 1 \pmod{4}$, $x \equiv 0 \pmod{3}$, $x \equiv 5 \pmod{7}$.	6
		$\mathbf{UNIT} - \mathbf{IV}$	
4.	a)	Find all the positive integers x and y such that $x^{\phi(y)} = y$.	6
	b)	Solve linear congruence $4x \equiv 7 \pmod{15}$	6
		OR	
	c)	Prove that, if x, y, z is Pythagorean triple and $(x, y) = d$ then $(y, z) = (z, x) = d$.	6
	d)	Show that the integer solution of $x^2 + 2y^2 = z^2$ with $(x, y, z) = 1$ can be expressed as $x = \pm (2a^2 - b^2), y = 2ab, z = 2a^2 + b^2$.	6
5.		Solve any six :	
		a) Evaluate $[n, n+1]$, where $n \in \mathbb{N}$.	2
		b) Find (5325, 492)	2
		c) Define Fermat Numbers.	2
		d) Prove that $(a^2, b^2) = c^2 if(a, b) = c$.	2
		e) Let a, b, c be integer such that $a \equiv b \pmod{m}$ then prove that $ac \equiv bc \pmod{mc}, c > 0$	2
		f) Find the remainder when 43^{289} is divided by 7.	2
		g) Define Pythagorean Triple.	2
		h) Prove that, if x, y, z is a primitive Pythagorean triple in which the difference $z - y = 2$ then $x = 2t$, $y = t^2 - 1$, $z = t^2 + 1$, for some $t > 1$.	2
