B.Sc. (Part-II) (CBCS Pattern) Sem-IV USMT07 - Mathematics-I Paper-VII : Algebra

P. Pages : 2 Time : Three Hours			GUG/W/22/12014 Max. Marks : 60	
	Not	es : 1. Solve all five questions. 2. All questions carry equal marks.		
		UNIT - I		
1.	a)	Show that if G is an abelian group, then $(ab)^n = a^n b^n \forall a, b \in G$ and \forall in	tegers n. 6	
	b)	If H and K are subgroups of G, show that $H \cap K$ is a subgroup of G.	6	
		OR		
	c)	Prove that- $(12345678)^4 = (15)(26)(37)(48)$	6	
	d)	For $S = \{1, 2, 3, \dots, 9\}$ and $a, b \in A(S)$, compute $a^{-1}ba$ where $b = (1579)$,	a = (135)(12). 6	
		UNIT - II		
2.	a)	Show that any two right cosets of a subgroup are either disjoint or identica	l. 6	
	b)	If G is a finite group and H is a subgroup of G, then prove that O(H) is a d	ivisor of O(G). 6	
		OR		
	c)	Prove that, N is normal subgroup of G if and only if $gNg^{-1} = N$, $\forall g \in G$.	6	
	d)	Suppose that N and M are two normal subgroups of G and that $N \cap M = ($ for any $n \in N$, $m \in M$, $nm = mn$.	e), show that 6	
UNIT - III				
3.	a)	If ϕ is an homomorphism of a group G into a group G', then prove that- i) $\phi(e) = e^{1}$ ii) $\phi(x^{-1}) = (\phi(x))^{-1} \forall x \in G$	6	
	b)	Let N be a normal subgroup of G. Define the mapping $\phi: G \to G / N$ such $\phi(x) = Nx \ \forall x \in G$. Then show that ϕ is a homeomorphism of G onto G/N		

1

c)

4.

5.

of G.

Let ϕ be a homormophism of G onto G' with kernel K. Then prove that $G/K \approx G'$. d) 6 UNIT - IV Let R be a ring with unit element, 1, in which $(ab)^2 = a^2 b^2 \forall a, b \in \mathbb{R}$. Prove that R must 6 a) be commutative. Prove that A nonempty subset S of a ring R is a subring of $R \Leftrightarrow x - y, xy \in s \forall x, y \in s$. b) 6 OR Show that the ring $R = \{a + b\sqrt{2}/a, b \in Z\}$ is an integral domain under addition and c) 6 multiplication. Prove that the set of units in a commutative ring with unity is a multiplicative abelian group. d) 6 Solve any six. Let G be a group. Then show that every $a \in G$ has a unique inverse in G. 2 a) Define even and odd permutation. 2 b) Define right coset and left coset of subgroup H in group G. 2 c) 2 d) Define; Quotient Group. 2 Define homormophism and isomorphism. e) G is a group of real numbers under addition $\phi: G \to G$ such that $\phi(x) = 13x \forall x \in G$ f) 2 then prove that ϕ is homomorphism. Define Ring. 2 g) Define field. 2 h)

If ϕ is a homormophism of G into G' with Kernel K then prove that K is normal subgroup

6
