B.Sc. S.Y. (CBCS Pattern) Semester - III USPHT06 - Physics Paper-II Radiation and Statistical Physics

	ages : le : Thi	e Hours * 1 7 4 8 *	GUG/S/23/11617 Max. Marks : 50
	Note	 1. All questions are compulsory. 2. Draw neat and well labelled diagrams wherever necessary. 	
	Eith	•••	
1.	i)	State and Prove Planck's radiation law for distribution of energy in the black	x body. 5
	ii)	What is perfectly black body? Explain the temperature dependence of black b	oody radiation. 3
	iii)	A black sphere of diameter 9 cm is heated to 550K when the surrounding ter 300 K. What is the rate at which energy is radiated?	mperature is 2
		(Stefan's constant is $6 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$).	
		OR	
	a)	Deduce Rayleigh – Jeans law from Planck's law.	21/2
	b)	State and explain Stefan's – Boltzmann law.	21/2
	c)	Derive Wein's displacement law from Planck's law of radiation.	21/2
	d)	Calculate the surface temperature of sun if the wavelength of maximum interspectrum is 4753 A^0 and Wien's constant is $0.2898 \times 10^{-2} \text{ mK}$.	nsity in solar $2^{1/2}$
	Eith	••	
2.	i)	Derive the condition of equilibrium between two systems in thermal contact other.	with each 5
	ii)	Explain the terms microstate and microstates with suitable examples.	2
	iii)	In a system in thermal equilibrium at temperature T, two states with energy $(4.8 \times 10^{-14} \text{ erg} \text{ occur with relative probability } \text{e}^2 \text{erg} \cdot \text{deg}^{-1}$. Calculate the temperature k = $1.38 \times 10^{-16} \text{ erg} / \text{deg}$).	

OR

a)	Discuss the constraints in thermodynamic system.	21/2
b)	Explain the principle of equal a priori probability.	21/2

c)	Write a short note on thermodynamic probability.	21/2	
d)	A card is drawn from a well shuffled pack of 52 cards. Calculate the probability for this card to be either a queen or king.	21/2	
Eith	er:		
i)	Explain in detail Maxwell – Boltzmann energy distribution for gas molecules.	5	
ii)	State basic postulates of large number of particle distribution in MB statistics.	3	
iii)	Calculate the most probable speed of nitrogen at 27°C. Given $N = 6 \times 10^{23}$ molecules / mole $K = 1.38 \times 10^{-16} \text{ erg} / 0 \text{K}$.	2	
	d) Eith i) ii)	 d) A card is drawn from a well shuffled pack of 52 cards. Calculate the probability for this card to be either a queen or king. Either: i) Explain in detail Maxwell – Boltzmann energy distribution for gas molecules. ii) State basic postulates of large number of particle distribution in MB statistics. iii) Calculate the most probable speed of nitrogen at 27°C. Given N = 6×10²³ molecules / 	 d) A card is drawn from a well shuffled pack of 52 cards. Calculate the probability for this card to be either a queen or king. Either: i) Explain in detail Maxwell – Boltzmann energy distribution for gas molecules. 5 ii) State basic postulates of large number of particle distribution in MB statistics. 3 iii) Calculate the most probable speed of nitrogen at 27°C. Given N = 6×10²³ molecules /

OR

a) If $V_p, \overline{V}, V_{rms}$ are the most probable average and root mean square speeds respectively. $2^{1/2}$ Show that, for the Maxwell's distribution: $\frac{V_{rms}}{V_p} = \sqrt{\frac{3}{2}}$

b) Derive an expression for mean speed of molecules of ideal gas.
$$2^{1/2}$$

c) Deduce an expression for the most probable speed of molecules of ideal gas. $2^{1/2}$

d) At what temperature will the mean speed of hydrogen molecules be the same as that of $2^{1/2}$ Nitrogen molecules at 36°C. Molecular weight of N₂ = 28 and that of H₂ = 2.

Either:

3.

4.	i)	Deduce an expression for most probable distribution of FD statistics.	5
	ii)	What are Fermions? State the basic postulates of Fermi-Dirac Statistics.	3
	iii)	The number of conduction electrons per C. C. in Beryllium is 24.2×10^{22} and in Cesium	2
		is 0.91×10^{22} . If the Fermi energy of conduction electrons in Beryllium is 14.44 eV,	
		Calculate Fermi energy of conduction electrons in Cesium.	

OR

a)	Derive an expression for Fermi energy of electrons in a metal at absolute temperature.	21/2
b)	How does F.D. Statistics differ from B.E. Statistics?	21/2
c)	Explain the concept of distinguishable and indistinguishable particles with suitable examples?	21/2

d) A system consists of 5 particles arranged in 2 compartments. The first compartment is divided into 6 cells and the second into 8 cells. The cells are of equal size. Calculate the No. of microstates in the macro – state (2, 3), if the particles obey FD statistics.

21/2

5. Attempt **any ten** questions from the followings.

a)	What is Thermal Radiation?	1
b)	Give Planck's Postulates.	1
c)	What is emissive power and absorptive power of body?	1
d)	What do you mean by Probability?	1
e)	Give the difference between accessible states and inaccessible states.	1
f)	What is in – distinguishability of particulars?	1
g)	Write the possible arrangement of 3 particles in 2 cells for MB statistics.	1
h)	What is root mean square (RMS) velocity of the gas molecules?	1
i)	Define average speed of gas molecules.	1
j)	What do you mean by Bosons? Give examples.	1
k)	Define occupation index in BE statistics.	1
l)	Is neutron a Bosons or Fermion?	1
