B.Sc. S.Y. (CBCS Pattern) Sem-III USPHT06 : Physics Paper-II : Radiation and Statistical Physics

P. Pages : 3 Time : Three Hours			ours $* 3 6 1 7 *$ $GUG/W/22/11$ Max. Marks			
	Not		 All questions are compulsory. Draw neat labelled diagram wherever necessary. 			
		Eitl	ner:			
1.	a)	i)	Derive the Plank's law for distribution of energy in black body radiation.	5		
		ii)	Derive Wein's displacement law from Plank's law.	3		
		iii)	Filament of bulb is emitting radiation of maximum energy at 3.09×10^{-5} cm. Calculate filament temperature.	2		
			(Given $b = 2.884 \times 10^{-3} \text{ mk}$)			
			OR			
	b)	a)	Explain spectral distribution for black body.	21/2		
		b)	Derive Rayleigh – Jean's law from Plank's law.	21/2		
		c)	Calculate the number of modes of vibrations in frequency range 5×10^{14} Hz and 5.02×10^{14} Hz in an enclosure of volume 200 cm^3 (c = 3×10^8 m/s).	21/2		
		d)	Derive Stefan's Boltzmann law from Plank's radiation formula.	21/2		
		Eitl	ner:			
2.	a)	i)	Explain macrostates and microstates with suitable examples.	3		
		ii)	Calculate the probability that in tossing a coin 10 times, we get 6 heads and 4 tails.	2		
		iii)	Derive the condition of equilibrium between two systems in thermal contact.	3		
		iv)	State and explain principle of equal a priori probabilities.	2		
	OR					
	b)	a)	Define accessible and inaccessible microstates. Give its examples.	21/2		
		b)	Distinguish between mathematical probability and thermodynamical probability.	21/2		
		c)	Explain the concept of μ -space and phase space.	21/2		
		d)	Assuming that in a six faced die, the probability of getting any face uppermost is equal. If 5 dice are tossed simultaneously. Calculate the probability of getting the number 2 uppermost in any one die	21/2		

number 2 uppermost in any one die.

Either:

- **3.** a) i) Derive Maxwell's law of distribution of speed for the molecules of an ideal gas using **2** M B energy distribution formula.
 - ii) Derive an expression for
 - a) Most probable speed and
 - b) Root mean square speed
 - iii) Calculate the rms velocity of H₂ at 27°C. Given $k = 1.38 \times 10^{-23} \text{ J/deg}$ and mass of hydrogen molecule = $3.34 \times 10^{-27} \text{ kg}$.

OR

b) a) Draw the Maxwell-Boltzmann velocity distribution curve and state any three features $2\frac{1}{2}$ of distribution curve.

b) Show that mean speed of molecule of an ideal gas is given by $\overline{V} = \sqrt{\frac{8KT}{\pi m}}$.

- c) State the postulates of classical statistical mechanics.
- d) At what temperature is the root mean square velocity of hydrogen molecule is equal 2¹/₂ to the escape velocity from the surface of the earth. (Given escape vel. = 11.2 km/sec and mass of hydrogen molecule = 3.34×10^{-27} kg). k = 1.38×10^{-23} J/deg

Either:

4. a) i) What is Bose – Einstein statistics? What are its basics postulates? 3

- ii) Derive an expression $n_i = \frac{g_i}{e^{\alpha + \beta \epsilon i} 1}$ for the most probable distribution of the particles of system obeying. B.E. statistics.
- iii) Find the number of distributions for three particles in four energy levels if particle2 obey Bose-Einstein statistics.

OR

b) a) Derive an expression for Fermi energy of electron in a metal at absolute zero. $2\frac{1}{2}$

- b) What are Fermions? and state the basic postulates of Fermi Dirac statistics. $2^{1/2}$
- c) Explain comparison between M B and F D statistics. $2^{1/2}$
- d) Fermi energy of conduction electrons in silver is 5.48 eV. Calculate number of 2¹/₂ electrons per cm³. Given $m = 9.1 \times 10^{-28}$ gm, $h = 6.62 \times 10^{-27}$ erg sec and $1 \text{ ev} = 1.62 \times 10^{-12}$ erg.

6

 $2^{1/2}$

5

Solve any ten from the following.						
a)	Define perfectly black body.	1				
b)	State SI unit of Stefan's constant.	1				
c)	Two stars A and B emit radiations of blue and yellow colour respectively. Which is at a higher temperature?	1				
d)	Define most probable microstate.	1				
e)	A vessel contain 4 black and 7 white balls. If a ball is taken out of vessel at random. What is probability for it to be a black ball?	1				
f)	State the relation between entropy and thermodynamic probability.	1				
g)	According to Maxwell's law of distribution of speed, the number of molecules corresponding to zero speed is zero. Is it right statement?	1				
h)	State limitations of M.B. statistics.	1				
i)	Find the number of possible arrangements of three particles in two cells for M. B. statistics.	1				
j)	What are Bosons? Give examples.	1				
k)	Write down the Fermi – Dirac distribution function.	1				
1)	State the volume of one phase cell in classical statistics and quantum statistics.	1				

5.