B.Sc. S.Y. (CBCS Pattern) Semester - III USPHT05 - Physics Paper-I : Thermal Physics

P. Pages : 3 Time : Three Hours				GUG/S/23/11616 Max. Marks : 50	
	Not		 All questions are compulsory. Draw neat and well labelled diagram wherever necessary. 		
	Eit	her:			
1.	a)	i)	State and explain the Maxwell's law of distribution of molecular velocities.	3	
		ii)	Define degree of freedom. Hence explain the degree of freedom for monoatomic, diatomic and polyatomic gas.	3	
		iii)	State and prove law of equipartition of energy.	2	
		iv)	At the absolute temperature 400 K, calculate the most probable speed of molecules of hydrogen gas. Given mass of hydrogen gas is 3.2×10^{-27} kg and K = 1.38×10^{-23} J/K.	2	
			OR		
	b)	a)	Obtain an expression for mean free path of a gas molecule.	21/2	
		b)	Explain transport phenomena in gases for Momentum, Energy and Mass.	21/2	
		c)	State the equation for the coefficient of viscosity of a gas. What is the effect of pressure and temperature on it?	21/2	
		d)	Calculate the coefficient of viscosity of oxygen at N.T.P. from the following data: $\rho = 1.429 \text{ kg}/\text{m}^3$; $\overline{\text{C}} = 425 \text{ m}/\text{s}$ and $\lambda = 9.95 \times 10^{-8} \text{ m}$	21/2	
	Eit	her:			
2.	a)	i)	Define Thermodynamic system and Thermodynamic equilibrium.	2	
	,	ii)	State the first law of thermodynamics. State its importance and limitations.	3	
		iii)	Obtain an expression for work done in isothermal process.	2	
		iv)	A certain mass of an ideal gas at 27°C and at a pressure of 8 atm. is expanded suddenly to four times its volume.	3	

- Find: a) the final pressure
- b) final temperature ($\gamma = 1.5$)

OR

b)	a)	Distinguish between extensive and intensive variables with examples.	21/2				
	b)	Prove that $C_P - C_V = R$ using two specific heats.	21/2				
	c)	For an adiabatic change of an ideal gas prove that PV^{Υ} = constant where the symbols have their usual meaning.	21/2				
	d)	Calculate the work done when a gram molecule of an ideal gas expands isothermally at 27°C to double its original volume (Given $-R = 8.3 \text{ J/deg.mol}$)	21/2				
Eith	Either:						
a)	i)	Define heat engine.	1				
	ii)	Explain the construction and working of Carnot's ideal heat engine.	7				
	iii)	How the efficiency of a Carnot's engine is increased effectively.	2				
		OR					
b)	a)	Explain the entropy – temperature diagram.	21/2				
	b)	Distinguish between reversible and irreversible process.	21/2				
	c)	Show that in any irreversible process entropy of the universe increases.	21/2				
	d)	A Carnot's engine whose lower temperature heat – sink is at 27°C has its efficiency 40%. What is the temperature of the heat source?	21/2				
Either:							

4. a) i) Derive the Thermodynamic relation

a)
$$\left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial P}{\partial S}\right)_{V}$$

b) $\left(\frac{\partial S}{\partial V}\right)_{T} = \left(\frac{\partial P}{\partial T}\right)_{V}$

ii) Give the experimental set – up for Porus – Plug experiment and explain the experimental result.

4

6

OR

b) a) Derive the first latent heat equation
$$\frac{dP}{dT} = \frac{L}{T(V_2 - V_1)}$$
. $2^{1/2}$

b) Derive the second latent heat equation
$$C_2 - C_1 = \frac{dL}{dT} - \frac{L}{T}$$
.

GUG/S/23/11616

3.

c)	Explain Gibb's function (G) and Helmholtz function (F).	2¹/ ₂			
d)	Calculate the specific heat capacity of saturated steam at 100°C. [Given: For steam L = 539.3 cal/g. dL/dT = -0.64 cal/g.k and $C_1 = 1.01$ cal/g.k]	21/2			
Atte	Attempt any ten of the following.				
a)	State any two assumptions of kinetic theory of gases.	1			
b)	Define Thermal conductivity of gas.	1			
c)	Define r.m.s. velocity.	1			
d)	Define Isobaric and Isochoric process.	1			
e)	What is internal energy of system.	1			
f)	State Zeroth law of thermodynamics.	1			
g)	State second law of thermodynamics.	1			
h)	State Carnot's theorem.	1			
i)	State third law of thermodynamics.	1			
j)	Write the first T-ds equation.	1			
k)	Define Latent heat.	1			
1)	What is Joule – Thomson effect.	1			

5.