B.Sc. S.Y. (CBCS Pattern) Sem-III USPHT05 : Physics Paper-I : Thermal Physics

P. Pages : 3 Time : Three Hours			Hours $GUG/W/22/11$ * 3 7 5 6 * Max. Marks :		
	Not	es :	 All questions are compulsory. Draw neat labelled diagram wherever necessary. 		
		Eitl	her:-		
1.	a)	i)	Define mean free path.	1	
		ii)	Derive an expression for mean free path of gas molecules on the basis of kinetic theory of gasses and discuss the effect of temperature and pressure on mean free path.	5	
		iii)	Explain collision cross-section.	2	
		iv)	Calculate the mean free path and collision cross-section at 0°C and 1 atmospheric pressure if the number of molecules per unit volume is $3 \times 10^{25} \text{ m}^{-3}$ effective diameter of molecules is 2×10^{-8} cm and the average speed of molecules at the given temperature and pressure is 10^3 m/s.	2	
			OR		
	b)	a)	Write the assumptions of kinetic theory of gases.	21/2	
		b)	what is Degree of Freedom? Write Degree of Freedom for Mono, Di and Polyatomic gases.	21/2	
		c)	Derive an expression for the coefficient of viscosity of a gas on the basis of kinetic theory of gases.	21/2	
		d)	The average kinetic energy of a gas molecule at a certain temperature is 6.21 X 10^{-21} joule. Find the temperature.	21/2	
			(Boltzmann's constant K = 1.38×10^{-23} joule K ⁻¹)		
		Eitl	her:-		
2.	a)	i)	What is an adiabatic Process?	1	
		ii)	Derive an expression for work done in adiabatic process.	3	
		iii)	Show that for an adiabatic change in a perfect gas $PV^{\gamma} = Constant$.	3	
		iv)	A gas occupying one litre at 80 cm pressure is expanded adiabatically to 1190 c.c. If pressure falls to 60 cm. in the process, deduce the value of γ .	3	

b)	a)	What are intensive and extensive variables?	21/2		
	b)	State First law of thermodynamics. Discuss its physical Significance and limitations.	21/2		
	c)	Write a note on:i)Isothermal processii)Isochoric Process.	21/2		
d)		culate the work done by one mole of an ideal gas when it is expanded to double its ime at constant temperature at 0°C. Given, $R = 8.31$ J/Mole °C.	21/2		
Either:-					
a)	i)	What is Heat Engine? Define its efficiency.	2		
	ii)	Describe Carnot's reversible cycle. Deduce an expression for efficiency of Carnot's Heat Engine.	4		
	iii)	What are the effective ways to increase the efficiency of Carnot's Heat Engine.	2		
	iv)	In a Carnot's engine the temperature of the source and sink are 227°C and 102°C respectively. If the engine consumes 600×10^5 cals. Per cycle, find (i) efficiency of the engine (ii) work done per cycle.	2		
		OR			
b)	a)	Write Plank's and Clausius statements of second law of thermodynamics.	21/2		
	b)	State Carnot's theorem.	21/2		
	c)	Explain Carnot's reversible cycle on the basis of T-S diagram and find the efficiency of Carnot's heat engine.	21/2		
	d)	Calculate the change in entropy of a system containing 1 kg ice at 0°C which melts at the same temperature. Latent heat of ice 79.6 k cal/kg.	21/2		
	Eitł	ner:-			
a)	i)	What is Joule-Thomson effect?	1		
	ii)	Explain Joule-Thomson Porous-Plug experiment.	3		
	iii)	Apply Joule-Thomson effect to show that enthalpy is constant and obtain an expression for Joule-Thomson coefficient.	4		
	iv)	Calculate the change in temperature when carbon dioxide gas suffers Joule-Thomson expansion at 300 K. The pressure difference on the two sides of the plug being $5 \times 10^5 \text{ Nm}^{-2}$.	2		
	Giv	en : $a = 0.303 \text{ Nm}^4 \text{ mole}^{-2}$, $b = 4.27 \times 10^{-3} \text{ m}^3 \text{ mole}^{-1} \text{R} = 8.31 \text{ J} \text{ mole}^{-1} \text{K}^{-1}$,			
		$C_p = 8.75$ cal mole ⁻¹ K^{-1} , J = 4.18 J/cal.			

OR

3.

4.

b)	a)	Explain following thermodynamic potentials: i) Gibb's function ii) Helmholtz function.	21/2
	b)	Derive general equation of Maxwell's Thermodynamics relation using first and second law of thermodynamics.	21/2
	c)	Derive Clausius – Clapeyron's latent equation.	21/2
	d)	Calculate the change in melting point of wax when pressure is increased by 50 atmospheric pressure, using the following data: Melting point of was = 64°C, volume of solid wax at its melting point = 1.161 cm ³ , volume of liquid was at its melting point = 1.166 cm ³ , density of solid wax at 64°C = 0.96 g/cm ³ , latent heat of wax = 97 kilo-cal/kg, 1 atmospheric pressure = 10^5 N/m ² , J = 4.2 joule/calorie.	21/2
	Atte	empt any ten questions from the following.	
a)	Def	ine degree of freedom.	1
b)	Wr	Write an equation of pressure exerted by the gas.	
c)	Me	d the coefficient of viscosity of nitrogen gas at N.T.P. from the following given data. an free path, $\lambda = 9.98 \times 10^{-8}$ m, average velocity, c = 455 m/s, Density 1.25 kg/m^3 .	1
d)	Wh	at is an extensive variable? Give its example.	1
e)	Stat	te Zeroth law of thermodynamics.	1
f)	Wh	at is specific heat at constant pressure (C _p).	1
g)	Wri	ite second law of thermodynamics in terms of entropy.	1
h)	Wh	at is reversible and irreversible process?	1
i)	Stat	te third law of thermodynamics?	1
j)	Wh	at is laten heat? Write its SI unit.	1
k)	Wri	ite first and second TdS equations.	1
1)	Wri	ite second latent heat equation (Clausius equation).	1

5.