Notes: 1. Solve all the five question.
2. All questions carry equal marks.

UNIT - I

1. a) Let $X=\left\langle x_{n}\right\rangle$ and $Y=\left\langle y_{n}\right\rangle$ be a sequences of real numbers that converges to x and y respectively then prove that the sequence $X+Y$ converges to $x+y$.
b) Evaluate $\lim _{n \rightarrow \infty} \frac{4^{n+2}+3^{n+1}}{3^{n+2}+4^{n+1}}$

OR

c) If $\left\langle\mathrm{s}_{\mathrm{n}}\right\rangle,\left\langle\mathrm{t}_{\mathrm{n}}\right\rangle$ and $\left\langle\mathrm{u}_{\mathrm{n}}\right\rangle$ be three sequences.

Such that
i) $\mathrm{s}_{\mathrm{n}} \leq \mathrm{t}_{\mathrm{n}} \leq \mathrm{u}_{\mathrm{n}} \quad \forall_{\mathrm{n}}$
ii) $\quad \lim \mathrm{s}_{\mathrm{n}}=\lim \mathrm{u}_{\mathrm{n}}=\ell$
then prove that $\lim t_{n}=\ell$
d) Show that $\lim _{\mathrm{n} \rightarrow \infty}\left[\frac{1}{\sqrt{\mathrm{n}^{2}+1}}+\frac{1}{\sqrt{\mathrm{n}^{2}+2}}+---+\frac{1}{\sqrt{\mathrm{n}^{2}+\mathrm{n}}}\right]=1$

UNIT - II

2. a)

Prove that geometric series $\sum_{n=1}^{\infty} x^{n-1}$ converges to $\frac{1}{1-x}$ for $0<x<1$ and diverges for $x \geq 1$.
b) Test the convergence of the series.
$\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+-----$

OR

c) Test the convergence of series by D'Alembert's ratio test $1+\frac{3}{2!}+\frac{5}{3!}+\frac{7}{4!}+----$
d) Test the convergence of the alternating series

$$
1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+-----
$$

UNIT - III

3. a) Show that the function $d: R \times R \rightarrow R$ designed by $d(x, y)=\left|x^{2}-y^{2}\right| \forall x, y \in R$ is a pseudo metric on R and not a metric on R
b) Prove that a set A is open if and only if its complement is closed.

OR

c) Suppose that $\mathrm{Y} \subseteq \mathrm{X}$ then prove that a subset A of Y is open relative to Y if and only if $\mathrm{A}=\mathrm{Y} \cap \mathrm{G}$ for some open subset G of X .
d) Prove that finite union of closed sets is closed. Give counter example to show that arbitrary union of closed sets need not be closed.

UNIT - IV

4. a) Prove that $m(b-a) \leq L(p, f) \leq U(p, f) \leq M(b-a)$ where M and m denotes respective lub and glb of $f(x)$ in $I=[a, b]$.
b) Let f be a function defined on $[a, b]$ such that $|f(x)| \leq M \forall x \in[a, b]$ where M is a positive number prove that $\int_{a}^{-b} f(x) d x-\int_{-a}^{b} f(x) d x \leq 2 M(b-a)$.

OR

c) Let f be continuous and non - negative on [a, b]. Then prove that $F(x)=\int_{a}^{x} f(t) d t$ is monotonic increasing in $[a, b]$. Further more, $\int_{a}^{b} f(t) d t=F(b) \geq 0$ and equality holds true only for f is identically zero on $[\mathrm{a}, \mathrm{b}]$.
d) Prove that inequality. $\frac{2}{17}<\int_{-1}^{2} \frac{\mathrm{x}}{1+\mathrm{x}^{4}} \mathrm{dx}<\frac{1}{2}$
5. Attempt any six.
a) State Sandwich theorem on sequences.
b) Evaluate $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{n}^{1 / n}$.
c) Test the convergence of the series $\sum_{n=1}^{\infty} \mathrm{x}_{\mathrm{n}}$ if $\mathrm{x}_{\mathrm{n}}=\cos \frac{\pi}{\mathrm{n}}$
d) State necessary condition for convergence of series.
e) Define limit point of the set.
f) Define open set
g) Define Darboux's lower sum of f corresponding to partitions p.
h) Let f be bounded function defined on $[\mathrm{a}, \mathrm{b}]$ and p be any partition an $[\mathrm{a}, \mathrm{b}]$. Prove that $L(p,-f)=-U(p, f)$

