B.Sc. II (CBCS Pattern) Sem-III USMT-05 - Mathematics - I : Real Analysis

P. Pages : 2 Time : Three Hours			GUG/W/22/11612 Max. Marks : 60	
	Note	es : 1. Solve all the five question. 2. All questions carry equal marks. UNIT - I		
1.	a)	Let $X = \langle x_n \rangle$ and $Y = \langle y_n \rangle$ be a sequences of real numbers that converges respectively then prove that the sequence $X + Y$ converges to $x + y$.	to x and y 6	
	b)	Evaluate $\lim_{n \to \infty} \frac{4^{n+2} + 3^{n+1}}{3^{n+2} + 4^{n+1}}$	6	
		OR		
	c)	If $\langle s_n \rangle, \langle t_n \rangle$ and $\langle u_n \rangle$ be three sequences. Such that i) $s_n \leq t_n \leq u_n \forall_n$ ii) $\lim s_n = \lim u_n = \ell$	6	
		then prove that $\lim t_n = \ell$		
	d)	Show that $\lim_{n \to \infty} \left[\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right] = 1$	6	
		UNIT – II		
2.	a)	Prove that geometric series $\sum_{n=1}^{\infty} x^{n-1}$ converges to $\frac{1}{1-x}$ for $0 < x < 1$ and define $x \ge 1$.	6 liverges for	
	b)	Test the convergence of the series. $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} +$	6	
	OR			
	c)	Test the convergence of series by D'Alembert's ratio test $1 + \frac{3}{2!} + \frac{5}{3!} + \frac{7}{4!} + \frac{5}{3!} + \frac{5}{3!} + \frac{7}{4!} + \frac{5}{3!} + \frac{5}{3!} + \frac{7}{4!} + \frac{5}{3!} + $	6	
	d)	Test the convergence of the alternating series $1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} +$	6	

UNIT – III

- 3. a) Show that the function $d: R \times R \to R$ designed by $d(x, y) = |x^2 y^2| \forall x, y \in R$ is a pseudo metric on R and not a metric on R
 - b) Prove that a set A is open if and only if its complement is closed.

OR

- c) Suppose that $Y \subseteq X$ then prove that a subset A of Y is open relative to Y if and only if $A = Y \bigcap G$ for some open subset G of X.
- d) Prove that finite union of closed sets is closed. Give counter example to show that6 arbitrary union of closed sets need not be closed.

UNIT - IV

- 4. a) Prove that $m(b-a) \le L(p,f) \le U(p,f) \le M(b-a)$ where M and m denotes respective 6 lub and glb of f(x) in I = [a,b].
 - b) Let f be a function defined on [a, b] such that $|f(x)| \le M \forall x \in [a, b]$ where M is a positive 6 number prove that $\int_{a}^{-b} f(x) dx - \int_{-a}^{b} f(x) dx \le 2M(b-a)$.
 - c) Let f be continuous and non negative on [a, b]. Then prove that $F(x) = \int_a^x f(t) dt$ is monotonic increasing in [a, b]. Further more, $\int_a^b f(t) dt = F(b) \ge 0$ and equality holds true only for f is identically zero on [a, b].
 - d) Prove that inequality. $\frac{2}{17} < \int_{-1}^{2} \frac{x}{1+x^{4}} dx < \frac{1}{2}$

5. *A*

Attempt any six.

- a) State Sandwich theorem on sequences.
- b) Evaluate $\lim_{n \to \infty} n^{1/n}$.
- c) Test the convergence of the series $\sum_{n=1}^{\infty} x_n$ if $x_n = \cos \frac{\pi}{n}$
- d) State necessary condition for convergence of series.
- e) Define limit point of the set.
- f) Define open set
- g) Define Darboux's lower sum of f corresponding to partitions p.
- h) Let f be bounded function defined on [a, b] and p be any partition an [a, b]. Prove that L(p,-f) = -U(p,f)

2

2

2

2

2

2

2

2

6

6

6