B.Sc. (CBCS Pattern) Sem-III USCCHT06 - Chemistry Paper-II : Physical Chemistry

P. Pages : 2 Time : Three Hours			GUG/W/		22/11601 Marks : 50	
	Note	s: 1. 2. 3.	All five questions are compulsory and carry equal marks. Draw diagrams whenever necessary. Use of calculator is permitted.			
1.	a)	Draw th system.	e phase diagram for water system. Discuss the application of phase	rule to this	5	
	b)	State an diagram	d explain Nernst distribution law. Discuss Nicotine-water system w	rith suitable	5	
			OR			
	c)	Derive	Clausius-Clapeyron equation for liquid-vapour equilibrium.	2	2 1⁄2	
	d)	Define a	azeotropes? Describe the types of azeotropes with suitable examples	5. 2	2 1⁄2	
	e)	State an	d explain Henery's law.	2	2 1⁄2	
	f)	Discuss	phenol-water system with suitable phase diagram.	2	2 1⁄2	
2.	a)	State the change	e need for second law of thermodynamics. Derive an expression for for an ideal gas under isothermal process.	entropy	5	
	b)	Derive i N	Integrated form of Vant Hoff's equation for reaction $_{2}O_{4(g)} \rightarrow 2NO_{2(g)} \Delta H = 81.086 \text{ KJ}$		5	
		If the ec (R=8.31	uilibrium constant is 0.18 at 298 K. Calculate the equilibrium const 4 Jk ⁻¹ mol ⁻¹)	tant at 340K.		
			OR			
	c)	Derive	Gibbs-Helmholtz equation.	2	2 1/2	
	d)	Define	Gibb's free energy and explain its physical significance.	2	2 1⁄2	
	e)	Discuss	entropy as criteria of spontaneity and equilibrium.	2	2 1⁄2	
	f)	What ar	e partial molar quantities? Write expression for chemical potential.	2	2 1⁄2	
3.	a)	Obtain a concent order re	an expression for specific rate constant of second order reaction if in ration of both the reactants species are equal. State the characteristic action.	nitial cs of second	5	
	b)	What ar	e the characteristics of catalyst. Explain enzyme catalysis with suita	ıble example.	5	

1

c)	State the postulate of transition state theory.	2 1/2					
d)	Show that the half life period of first order reaction is independent of initial concentration of reactant species.	2 1/2					
e)	The rate constant of reaction is $2.5 \times 10^{-4} \text{ sec}^{-1}$ at 35°C and $4.1 \times 10^{-4} \text{ sec}^{-1}$ at 50°C. Calculate energy of activation of reaction (R = 8.314 JK ⁻¹ mol ⁻¹)						
f)	Explaini) Homogeneous andii) Heterogeneous catalysis with suitable examples	2 1/2					
a)	Define colligative properties. Obtain an expression for molar mass determination of solute from elevation of boiling point.						
b)	What is magnetic susceptibility? Describe Gouy's method for its measurement. How does it help in deciding the molecular structure of a substances.						
	OR						
c)	How osmatic pressure is measured experimentally by Berkeley and Hartley's method.	2 1/2					
d)	Explain the termsi) Diamagnetism andii) Ferromagnetism with suitable examples.	2 1/2					
e)	An aqueous solution containing 0.20 gm of solute dissolved in 20 gm of water froze at - 0.50°C. Calculate molar mass of solute if enthalpy of fusion of ice at 0°C is 6025 J/mole.						
f)	Define Vant-Hoff's factor. Obtain the relationship between Vant-Hoff's factor and degree of dissociation.						
	 Attempt any ten each carry one mark. 1) What is eutectic mixture? 2) State Raoult's law of ideal solution 3) Define upper consolute temperature 4) State any two statement of 2nd law thermodynamic 5) Define work function. 6) Write equation for relation between standard free energy change and equilibrium constant. 7) What is first order reaction? 8) Define energy of activation 9) Define Autocatalysis 10) Calculate the normality of solution, if 2g of NaOH is dissolved in 250 ml of solution. 11) What is Cryoscopic constant? 12) The number of unpaired electrons in O₂ molecules is two. Calculate magnetic moment. 						

4.

5.