B.Sc. F.Y. (CBCS Pattern) Sem-II USPHT03 - Physics (Paper-I) : Vector Analysis and Electrostatics

P. Pages: 2

Time : Three Hours

× 0 5 3 4 *

GUG/W/22/11590

Max. Marks: 50

Notes : 1. All questions are compulsory.

2. Draw well labelled diagram wherever necessary.

1. Either

a)

- i) Define scalar product of two vectors. State its important properties. 3
 - ii) Deduce the expression for scalar product of two vectors in terms of their rectangular components and obtain an expression for the angle between two vectors.
 3

iii) If
$$\vec{A} = (3\hat{i} + 4\hat{j} - 5\hat{k})$$
 and $\vec{B} = (\hat{i} - 2\hat{j} + 3\hat{k})$ Find (a) $\vec{A} + \vec{B}$ (b) $\vec{A} - \vec{B}$ (c) $\vec{A} \times \vec{B}$

OR

b)	1)	Define gradient of a scalar field in cartesian co-ordinates. Explain its physical	21/2
	2)	Significance. Show that scalar product of two perpendicular vector is zero.	21/2
	3)	Explain line integral of a vector field along the curve and give one example of the line integral	21/2
	4)	If ϕ is any scalar then Prove that curl grad $\phi = 0$.	21/2
	Fitl	ler.	

2. Either

a)	i)	State Coulomb's law for electrostatic force between two charges. Does this force	3
		depend on the medium between the charges?	
	ii)	Obtain an expression for the electric field due to a electric dipole at a point	5

a) On the axial line
b) On the equatorial line
iii) Find the magnitude of the isolated positive point charge which can produce an electric potential of 18 volts at a distance 10cm from the charge.

OR

b)	1)	Find an expression for electric field intensity due to a point charge.	21/2
	2)	Obtain an expression for work done in rotating an electric dipole in an electric field.	21/2
	3)	Obtain an expression for torque on a dipole in an uniform electric field.	21/2
	4)	Prove that the electric field by $\vec{E} = \hat{i}x + \hat{j}y + \hat{k}z$ is conservative.	21/2

3. Either

a)

i)	Write down the integral form of Gauss law and derive Coulomb's law from it.	3
ii)	Using Gauss's theorem, derive an expression for electric field intensity due to	5
	uniformly charged non-conducting solid Sphere at points.	

- a) Outside the sphere
- b) Surface on the sphere
- c) Inside the sphere

iii) A sphere of radius 5cm, has a point charge, $V = 17.7 \mu C$, located at its centre. Find 2 the electric flux through the surface. ($\varepsilon_0 = 8.85 \times 10^{-12} C^2 / N \cdot m^2$)

OR

b)	1)	Prove that the electric field on the surface of charged conductor is $\frac{\sigma}{\sigma}$	21/2
	1)		
	2)	Obtain an expression for electric Potential due to a point charge.	21/2
	3)	Using Gauss theorem obtain an expression for electric field intensity due to an infinite plane sheet of charge.	21/2
	4)	A thin spherical shell of radius 0.25m is uniformly charged to 0.2μ C. Calculate the	2 ¹ / ₂
		electric field intensity at a point 3.0 meter from the centre of spherical shell.	
	Eith	ner	
a)	i)	What is a capacitor? Define capacitance of a capacitor.	2
	ii)	Obtain an expression for the capacitance of a Parallel Plate capacitor when Partly filled with a dielectric substance.	5
	iii)	A capacitor of capacitance 40μ F is charged to a Potential 1000 Volt. Calculate the energy stored in the capacitor.	3
		OR	

b) 1) Derive an expression for the capacitance of a spherical condenser with air. 2¹/₂ 2) Explain Polar and non-Polar dielectric with example. 2¹/₂ 3) Obtain an expression for energy per unit volume in electric field. 2¹/₂ 4) A Parallel Plate capacitor of two plates of area 2m². The space between the plate is 1 mm and filled with a dielectric of relative permitivity of 7. Calculate the capacitance of

(4) A Parallel Plate capacitor of two plates of area 2ni . The space between the plate is 1 mm and filled with a dielectric of relative permitivity of 7. Calculate the capacitance of capacitor ($\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 / \text{ N} \cdot \text{m}^2$).

5. Solve **any ten** of the following.

a)	Define unit vector.	1
b)	Define divergence of a vector.	1
c)	Define cross product of a vector.	1
d)	Define electric Potential.	1
e)	What is an electric dipole?	1
f)	What is conservative electric field?	1
g)	What is Gaussian surface?	1
h)	Define dielectric material.	1
i)	State the equation for electric Potential at any point due to dipole.	1
j)	Define electric field intensity.	1
k)	Define capacitance of spherical capacitor.	1
1)	Define Polarizability of dielectric.	1

4.