B.Sc. (CBCS Pattern) Sem-II

USMT03 - Mathematics Paper-I : Ordinary Differential Equations and Difference Equations

P. Pages: 2 GUG/W/22/11586 Time: Three Hours Max. Marks: 60 Solve all the **five** questions. Notes: 1. 2. All question carries equal marks. UNIT - I 1. Show that the differential equation $(e^y + 1)\cos x dx + e^y \sin x dy = 0$ is exact and solve it. 6 a) 6 b) Solve $\frac{dy}{dx} + \frac{y}{x} = x^2$, given y = 1 when x = 1. OR 6 c) Solve: $\cos x dy = y(\sin x - y) dx$ Find the orthogonal trajectories of the family of semi cubical parabolas. d) 6 $av^2 = x^3$. **UNIT - II** 2. Solve: $y'' - 4y' + 4y = e^{2x} + \sin 2x$. 6 6 Solve: $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = e^{-5x}$. OR Solve; $(D^3 - 7D - 6)y = e^{2x}(1+x)$. 6 c) d) Solve: $\frac{dx}{dt} + 7x - y = 0$, $\frac{dy}{dt} + 2x + 5y = 0$. 6 **UNIT - III 3.** 6 Solve $x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + 2y = e^x$.

Solve: $(x^2D^2 - xD + 4)y = \cos(\log x)$.

OR

6

Prove that any two linearly independent functions y_1 and y_2 satisfy the differential equation $u'' + \frac{y_2 y_1'' - y_1 y_2''}{W} u' + \frac{y_1' y_2'' - y_2' y_1''}{W} u = 0$ where $W = W(y_1, y_2, x)$.

6

d) Find the particular solution of y'' - 2y' + y = 2x by variation of parameters. 6

UNIT - IV

- 4. a) From the equation $y_n = A \cdot 3^n + B \cdot 5^n$, derive a difference equation by eliminating arbitrary constant A and B.
 - b) Solve: $u_{n+2} + 4u_{n+1} + 3u_n = 2^n$ given $u_0 = 0$, $u_1 = 1$.
 - c) Solve: $y_{n+2} 2\cos\alpha \cdot y_{n+1} + y_n = \cos(\alpha n)$.
 - d) Solve $u_{n+2} 4u_n = n^2 + n 1$.
- 5. Solve any six.
 - a) Find the integrating factor of the linear differential equation $\frac{dy}{dx} + \frac{2}{x}y = \sin x$.
 - b) Solve the differential equation $p = \log(px y)$, $p = \frac{dy}{dx}$.
 - c) Solve: (D-1)(D-2)(D-3)y=0, where $D=\frac{d}{dx}$.
 - d) Solve: y'' + 2y' + y = 0.
 - e) If y_1 and y_2 are linearly dependent differentiable functions then prove that their Wronskian vanishes identically.
 - f) Define Wronskian $W(y_1, y_2, x)$.
 - g) Solve: $y_{n+3} 3y_{n+1} 2y_n = 0$.
 - h) Write the difference equation $\Delta^2 y_n 3\Delta y_n + 2y_n = 0$ in E-form.
