B.Sc. F.Y. (CBCS Pattern) Sem-I **USPHT02 - Physics Paper-II (Gravitation, Oscillation and Properties of Matter)**

	Pages : ne : Th			GUG/W/22/11561 Max. Marks : 50						
	Note		 All questions are compulsory. Draw neat and well labelled diagram wherever necessary. 							
		Eitl	her:							
1.	a)	i)	Derive an expression for the gravitational potential due to thin spherical s i) Outside ii) On the surface and iii) Inside the shell	hell at a point: 6						
		ii)	Explain the term 'Global Positioning System' (GPS)	2						
		iii)	Find the mass of sun from the following data: Radius of earth's orbit $r = 1.5 \times 10^8 \text{ km.} \left(\text{G} = 6.67 \times 10^{-11} \text{ Nm}^2 \text{Kg}^{-2} \right)$	2						
			OR							
	b)	i)	Explain the terms: Gravitational field and Gravitational potential.	21/2						
		ii)	Derive an expression for critical velocity required to set a satellite in a c	ircular orbit. $2^{1/2}$						
		iii)	Deduce an expression for gravitational self – energy of any uniform soli	d sphere. $2^{1/2}$						
		iv)	Calculate the gravitational self – energy of the earth assuming its radius 6.37×10^6 m and mass to be 5.98×10^{24} kg. Given : $(G = 6.67 \times 10^{-11} \text{ Nm}^2)$	2½ Kg ⁻²)						
		Eitl	her:							
2.	a)	i)	Derive the differential equation of linear S. H. M. and solve it to show $x = a \sin(wt + \phi)$	5						
		ii)	States Damped and force harmonic oscillations.	3						
		iii)	A particle of mass 5 kg lies in a potential field $V = 8x^2 + 200$ Joules / kg Calculate its time period.	g. 2						
		OR								
	b)	i)	Obtain an expression for the power dissipation in damped harmonic mo	tion. $2^{1/2}$						
		ii)	If the amplitude of a simple harmonic oscillator is doubled, then how do the time period, total energy and maximum velocity of the oscillator?	bes this affect $2^{1/2}$						
	c)	Exp	plain free, damped and forced harmonic oscillations.	21/2						
GUG/W/22/11561		11561	L 1	P.T.C						

A man stands on a platform which vibrates simple harmonically in a vertical directions at $2^{1/2}$ d) a frequency of 5 Hertz. Show that mass losses contact with the platform when the displacement exceeds 10^{-2} meters Either: 5 3. What is torsion of cylinder? Derive an expression for the torque required to twist a a) i) given cylindrical wire through Q radian. 3 Show that for homogeneous isotropic medium: $Y = 3K(1-2\sigma)$ ii) 2 iii) A sphere of mass 0.8 kg and radius 3 cm is suspended by a wire 1.0m long of radius 0.5m If the time for one torsional vibration 1.23 sec. Determine the modulus of rigidity of wire. OR $2^{1/2}$ b) Find the expression for work done in stretching a wire under the load. i) ii) Explain the behavior of wire under action of load with Stress – Strain diagram. $2^{1/2}$ iii) State Poisson's ratio what are limiting values of Poisson's ratio, $2^{1/2}$ What couple is required to twist the wire of length 1 m and diameter 1 mm through $2^{1/2}$ iv) an angle 90°. Modulus of rigidity = 2.8×10^{10} N/m² Either: Describe with necessary theory Poiseuille's method of determining the coefficient of 4. i) 6 a) viscosity of a liquid. State clearly the assumptions made. ii) Distinguish between stream line flow and turbulent flow of a liquid. 2 2 Water flows through a horizontal pipe line of varying cross – section. At a point iii) where the pressure of water is 0.05 m of mercury the velocity of flow is 0.25 m/s. Calculate the pressure at another point where velocity of flow is 0.4 m/s. (Density of water = $10^3 \text{kg}/\text{m}^3$)

OR

b)	i)	Give an account of molecular theory of surface tension.	21/2
	ii)	Deduce an expression for the difference of pressure on the two side of a spherical drop.	21/2
	iii)	Derive an expression for the excess pressure inside a soap bubble in air.	21/2
	iv)	Calculate the excess pressure inside a soap bubble of radius 3×10^{-3} m. Surface tension of soap solution 20×10^{-3} N/m. Calculate the surface energy.	21/2

Attempt **any ten** from following.

5.

a)	State Kepler's laws of planetary motion.	1
b)	State Newton's law of Universal Gravitation.	1
c)	What is central force? Give at least one examples.	1
d)	Define Quality factor.	1
e)	What is resonance? Explain sharpness of resonance.	1
f)	What is damping coefficient?	1
g)	State Hooke's law	1
h)	Define Poisson's ratio.	1
i)	Define modulus of Rigidity.	1
j)	State any two applications of Bernolli's theorem.	1
k)	Explain wetting of a solid with a liquid	1
1)	Define Reynold's Number (K).	1
