B.Sc. (CBCS Pattern) Sem-I USPHT02 - Physics Paper-II (Gravitation, Oscillation and Properties of Matter)

P. Pages : 3		GUG/W/22/11561	
Time : Three Hours	* 3 7 3 6 *	Max. Marks : 5	

Either:

1.	a)	i)	Define Gravitational Potential and Gravitational Field.	2
		ii)	Derive an expression for the gravitational potential due to spherical shell	6
			a) At a point outside the spherical shell	
			b) At a point on the surface of shell	
			c) At a point inside the spherical shell.	
		iii)	Calculate the Gravitational Potential and intensity of gravitational field of thin spherical shell of mass 10 kg and radius 0.1 m at a point 0.1 m. outside from the surface $(G = 6.673 \times 10^{-11} \text{ Nm}^2 / \text{kg}^2)$.	2
			OR	
	b)	a)	State Kepler's law of planetary motion.	21/2
		b)	Give basic idea of Global Positioning System (GPS).	2 ¹ / ₂
		c)	Obtain an expression for gravitational self energy of a uniform solid sphere. Why it is negative.	21/2
		d)	Calculate the gravitational self energy of the Earth assuming its radius 6.37×10^6 m and mass to be 5.98×10^{24} kg. Given $G = 6.673 \times 10^{-11}$ Nm ² kg ⁻² .	21/2

Either:

2.

a)	i)	Define simple harmonic motion.	1
	ii)	Derive the differential equation of linear S.H.M. and solve it to show $x = a \sin(\omega t + \phi)$.	6

iii) A man stand on a platform with vibrates simple harmonically in vertical directions at a frequency of 5 hertz. Show that the mass losses contact with the platform when the displacement exceeds 10^{-2} meters.

OR

b)	a)	Obtain an expression for the power dissipation in damped harmonic motion.	21/2		
	b)	Define forced and damped harmonic oscillations.	21/2		
	c)	State the conditions under which motion becomes dead beat, critically damped, damped oscillatory motion.	21/2		
	d)	In an oscillatory circuit L = 0.5 H, C = 1.8 μ F what is the maximum value of resistance to be connected so that the circuit may be produce oscillation.	21/2		
Eitł	ner:				
a)	i)	Explain the term : Angle of shear and Angle of twist.	2		
	ii)	Derive an expression for the torque require to twist a cylinder of length 1 through an angle θ .	3		
	iii)	State and explain Hooks law.	2		
	iv)	Prove that $9/Y = 1/K + 3/\eta$.	3		
		OR			
b)	a)	State the Poisson's ratio. What are the limiting values of Poisson's ratio?	21/2		
	b)	What is Torsional Pendulum? Deduce an expression for the time period of Torsional Pendulum.	21/2		
	c)	Explain : (i) Elastic Limit (ii) Yield Point (iii) Elastic Fatigue with the help of stress – strain diagram.	21/2		
	d)	A sphere of mass 0.8 Kg and radius 3 cm is suspended by a wire 1 m long of radius 0.5 m. If the time for one torsional of vibration 1.23 sec. Determine the modulus of rigidity of wire.	21/2		
Eitł	ner:				
a)	i)	State and Prove Bernoulli's theorem for a liquid along a streamline.	5		
	ii)	What is turbulent flow and streamline flow.	2		
	iii)	Deduce an expression for the equation of continuity for incompressible.	3		
	OR				
b)	a)	Explain the concept of wetting. Under what conditions wetting is possible.	21/2		
	b)	What is surface tension? Give its intermolecular interpretation.	21/2		
	c)	Derive an expression for the excess pressure inside a soap bubble in air.	21/2		
	d)	Calculate the excess pressure inside a soap bubble of radius 3×10^{-3} m S.T. of soap solution is 20×10^{-3} N/m. Calculate the surface energy.	21/2		

3.

4.

Answer any ten questions from the following.			
a)	What is Gravitational self energy of a body?	1	
b)	State Newton's law of Universal Gravitation.	1	
c)	What is central force?	1	
d)	Write the differential equation of S.H.M.	1	
e)	What is meant by free harmonic oscillation?	1	
f)	Define Quality factor.	1	
g)	Define the term elasticity.	1	
h)	Define Modulus of Rigidity.	1	
i)	A wire 0.5 m long and 1 sq. mm. in cross section has Young's modulus $1.24 \times 10^{11} \text{ N}/\text{m}^2$. How much work done in stretching it through 1 mm.	1	
j)	What is meant by angle of contact?	1	
k)	State Reynolds Number (K).	1	
l)	Write the application of Bernoulli's theorem.	1	

5.