B.Sc. F.Y. (CBCS Pattern) Sem-I
 USPHT01 - Physics Paper-I (Mechanics and Relativity)

Notes : 1. All questions are compulsory.
2. Draw neat and well labelled diagram wherever necessary.

Either:

1. a) i) Distinguish between Inertial and Non-inertial frame of reference.
ii) Obtain an expression for radial and transverse components of velocity.
iii) The path of projectile is given by an equation $3 \mathrm{t}^{2}-\frac{\mathrm{t}^{2}}{20}$ Meter. Find the velocity and acceleration after the time of 10 sec .

OR

b) a) State Newton's laws of motion and write the limitations.
b) Obtain an expression for Centripetal force.
c) Derive the equation of motion of Centre of mass.
d) Two particles of masses 5 gm and 7 gm are at a distance of 2 cm and 3 cm respectively from the origin. Calculate the position of Center of mass.

Either:

2. a) i) Discuss the phenomenon of Collision in one dimension between two particles when the Collision is elastic. hence find velocities after collision.
ii) State and prove law of conservation of linear momentum.
iii) If the two bodies having masses 10 kg and 8 kg and their respective initial velocities are $5 \mathrm{~m} / \mathrm{sec}$. and $6 \mathrm{~m} / \mathrm{sec}$. Find the final velocities of the two bodies after elastic collision in one dimension.

OR

b) a) When masses of colliding particle are same and when one of the particle is initially at rest.
b) State and prove the work-energy principle.
c) Explain the terms elastic and inelastic collision. With examples.
d) A gun of mass 10 kg fires a bullet of 100 gm with a velocity $1500 \mathrm{~cm} / \mathrm{s}$. Find the velocity with which gun is recoiled.

Either:

3. a) i) Derive an expression for moment of inertia of a solid sphere.
a) About its diameter
b) About a tangent
ii) State the principle of perpendicular and parallel axes about M.I. of body. Give their mathematical equations.
iii) Calculate the radius of gyration of a solid sphere rotating about its diameter whose

OR

b) a) Derive an expression for moment of inertia of thin ring about an axis passing through its Centre and perpendicular to its plane.
b) Explain the moment of inertial and radius of gyration.
c) State and prove law of conservation of angular momentum.
d) Assuming earth to be solid sphere of uniform density $5520 \mathrm{~kg} / \mathrm{m}^{3}$ and radius 6400 km , Calculate the moment of inertia about its axis of rotation.

Either:

4. a) i) Derive the relativistic formula for variation of mass with velocity.
ii) Derive an expression for length contraction. Give its interpretation.
iii) A Rocket of rest mass 7000kg is travelling with a velocity of 0.6C. Find the relativistic mass.

OR

b) a) Explain constancy of speed of light.
b) Derive an expression for time dilation and discuss the result. $\quad \mathbf{2 1 / 2}$
c) Derive an expression for relativistic mass energy relation. $\quad \mathbf{2 1 / 2}$
d) At what velocity a particle will moves if it's mass become equal to 4 times its rest mass.
5. Attempt any ten from following.
a) Show that Newton's second law is a special case of first law.
b) Write the names of forces acting on a moving particle in rotating frame.
c) What is frame of reference?
d) What is rocket?
e) Name the fuel used in the rocket.
f) State the principle of rocket.
g) What is torque?
h) Write the relation between τ and L.
i) Define angular impulse.
j) Write down the postulates of special theory of relativity.
k) What is meant by proper time?

1) Write down the Lorentz transformation equations.
