Notes : 1. All questions are compulsory.
2. All questions carry equal marks.
3. Use of calculator is allowed.

1. a) Explain the Fiesher Woodward rules for dienes. Also calculate the $\lambda_{\max }$ value of the following compounds.
A)

B)

b) i) Explain the basic principle of photoelectron spectroscopy.
ii) What is the basis for qualitative and quantitative analysis in ESCA technique?

OR

c) State and explain the Frank-Condon principle.
d) Derive Beer Lamberts Law and give its limitations.
e) State and explain Koopmans theorem. And also explain the basic idea about Auger electron spectroscopy.
f) Discuss the various electronic transition in UV-visible spectroscopy.
2. a) Define chemical shift. Explain the various factors affecting the chemical shift.
b) i) Explain the theory of spin-spin interaction for an AMX and AX_{2} type case.
ii) A neutral compound with molecular formula $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{2}$ shows the following signals in ${ }^{13} \mathrm{C}-\mathrm{NMR}$, suggest probable structure for the compound.
${ }^{13} \mathrm{C}-\operatorname{NMR} \delta: 6.3(\mathrm{q}), 15.3(\mathrm{q}), 71.1(\mathrm{t}), 119.9(\mathrm{~s}), 168.4(\mathrm{~d}), 191.8(\mathrm{~d})$.

OR

c) Describe the role of shift reagent in NMR spectroscopy.
d) Explain the variation of coupling constant with dihedral angle.
e) Explain the following in 'H NMR spectroscopy.
i) Resonance condition.
ii) Spin-spin interaction.
f) Discuss the ${ }^{19} \mathrm{~F}$ - NMR spectroscopy in detailed.
3. a) Assign the structures of compound M and N on the basis of data given below;
i) PCl_{5}
compound $\mathrm{M} \xrightarrow[\begin{array}{c}\text { ii) } \mathrm{AlCl}_{3} / \mathrm{CS}_{2} \\ \text { iii) } \mathrm{Zn} / \mathrm{Hg}-\mathrm{HCl}\end{array}]{\text { compound } \mathrm{N}}$

Mol. Formula	Mol. Formula
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$	$\mathrm{C}_{11} \mathrm{H}_{14}$
$\mathrm{H}-\mathrm{NMR} \delta: 1.22(\mathrm{~s}, 6 \mathrm{H})$	$\mathrm{H}-\mathrm{NMR} \delta: 1.21(\mathrm{~s}, 6 \mathrm{H})$
$2.0(\mathrm{~s}, 2 \mathrm{H})$	$1.85(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 2 \mathrm{H})$
$7.0(\mathrm{~s}, 5 \mathrm{H})$	$2.83(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 2 \mathrm{H})$
$10.10(\mathrm{~s}, 1 \mathrm{H} . \mathrm{ex})$.	$7.02(\mathrm{~m}, 4 \mathrm{H})$

b) Explain the following terms,
a) Quadrupole nuclei.
B) Quadrupole moment.

OR

c) Discuss the advantages of FT-NMR.
d) Explain the DEPT method with suitable example.
e) Deduce the structure of compound having molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ which give following spectral data,
IR : $1200-1280 \mathrm{~cm}^{-1}$, PMR : $\delta 1.32(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 3 \mathrm{H}), 2.42(\mathrm{dd}, \mathrm{J}=3.5 \& 2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.72(\mathrm{dd}, \mathrm{J}=3.5 \& 3.0 \mathrm{~Hz}, 1 \mathrm{H}) 2.98(\mathrm{ddq}, \mathrm{J}=2.5,3.0 \& 6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$.
f) Explain Nuclear overhausser effect.
4. a) Give a brief account of Bragg's method used in the elucidation of crystal structure. What are the limitations of Bragg's method?
b) Discuss the applications of electron diffraction technique.

OR

c) Write a note on intensity in x-ray diffraction.
d) Define and explain the term 'structure factor' used in XRD.
e) Write Wierl equation and explain the terms involved in it.
f) Give the application of neutron diffraction technique.
5. a) Give the effect of solvent on $\pi \rightarrow \pi^{*}$ and $n \rightarrow \pi^{*}$ transition in α, β - unsaturated compound.
b) A $1.0 \times 10^{-5} \mathrm{M}$ solution of a compound has a $\%$ transmittance of 50 at $\lambda_{\text {max }}=280 \mathrm{~nm}$ when a 1.0 cm cell is used. Calculate the $\varepsilon_{\max }$ of 280 nm .
c) Why TMS is used as reference in NMR?
d) Calculate the precessional frequency of a proton in a field of $1.8 \mathrm{~T} \&$ factor for proton is 5.585.
e) Write a short note on APT technique.
f) Show the total number of signals in the following compound.
i)

ii)

g) Calculate Miller indices of crystal planes which cut through the crystal axes of
i) $2 \mathrm{a}, 3 \mathrm{~b}, \mathrm{c}$
ii) $2 \mathrm{a},-3 \mathrm{~b},-3 \mathrm{c}$.
h) Explain, magnetic scattering of neutron by a paramagnetic crystal in random one?

