M.Sc.(Chemistry) (CBCS Pattern) Semester - III **PSCHT10.2 - Special Paper-I : Organic Chemistry-I**

P. Pages: 3 Time: Three Hours			GUG/S/23/11334 Max. Marks : 80			
1.	a)	Explain the following:				
		i) Norrish type – I reaction				
		ii) Paterno – Buchi reaction				
	b)	Explain photochemistry of aromatic compounds with reference to addition and substitution reaction.	8			
		OR				
	c)	Explain Barton reaction.	4			
	d)	Explain Norrish type – II reaction.	4			
	e)	Explain Paterno – Buchi reaction.	4			
	f)	Discuss – Hoffmann – Loeffler reaction.	4			
2.	a)	Discuss the following:	8			
		i) Claisen rearrangement reaction.				
		ii) [4 + 2] cycloaddition of ketones.				
	b)	Explain $4n \pi$ and $(4n + 2)$ el \ominus cyclo – addition in thermal and photochemical condition.	8			
		OR				
	c)	Explain Sommelet – Hauser rearrangement reaction.	4			
	d)	Explain cheletropic reaction. How it is related to Diels – Alder additions.	4			
	e)	Explain perturbation of molecular orbital approach of pericyclic reaction under thermal conditions.	4			
	f)	Discuss the [3, 5] sigma tropic rearrangements reaction.	4			
3.	a)	Explain the following:	8			
		i) Sharpless asymmetric epoxidation.ii) Baeyer – Villiger oxidation				

b) Discuss the following:

8

- i) Adam Catalyst
- ii) Birch reduction

OR

c) Explain Wilkinson catalyst.

4

d) Explain oxidative cleavage of olefins.

4

e) Discuss Meerwein – Pondorff – Verley reduction.

4

f) Complete the following reaction:

4

i) OH
$$O_5 O_4$$
 $P_2 O_2 / P_2 O$?

- ii) ?
- iii) $CH_3CH = CHCOOC_2H_{\rho} \xrightarrow{LiAlBH_4} ?$

4. a) Explain the following:

8

- i) Synthesis of E_iE dienes.
- ii) Preparation and application of Catechol borane.
- b) Explain preparation and synthetic applications of phosphorus ylide.

8

OR

c) Discuss synthetic methodologies based on titanium compound.

4

d) Explain synthesis of Thexyl boranes with its mechanism.

4

e) Explain Paterson synthesis.

4

f) Discuss the role of 1, 3 – dithiane in organic synthesis.

4

5.	a)	Define Quantum efficiency.	2
	b)	Write note on photochemistry of vision.	2
	c)	Write cope reaction.	2
	d)	What is suprafacial and antarafacial shift?	2
	e)	Explain Enzyme Catalyzed reduction.	2
	f)	Write chemical equation of Collin and Jones reagent.	2
	g)	Explain synthesis of Allyl boranes?	2
	h)	What are umpolung?	2
