M.Sc. S.Y. (Physics) (CBCS Pattern) Semester - III PSCPHYT11-3 - Core Elective E1.3 : Atomic and Molecular Physics-I

P. Pages: 2 GUG/S/23/11300 Time : Three Hours Max. Marks: 80 **Either:** 1. What are quantum states of an electron is an atom? Explain in detail the spectrum of 8 a) hydrogen atom. b) Explain the concepts of NMR spectroscopy. 4 c) Explain spin lattice relaxation. 4 OR Explain the concept of Mossbauer effect in γ -rays. 8 e) f) Explain chemical shift in Mossbauer spectroscopy. 4 Explain magnetic hyper fine interaction. 4 **g**) **Either:** 2. Explain the principle of ESR. Describe an experimental set-up. 10 a) Discuss the general theory of hyperfine splitting. b) 6 OR Explain Paschen back effect. 4 e) Explain construction and working of He-Ne laser. f) 6 Derive the relation between Einstein coefficients A and B. 6 g) **Either:** 3. a) Explain rotational and vibrational energy of diatomic molecules. 6

c) Explain Intensity alteration in Raman spectra of diatomic molecules. 6

OR

e) What is Raman effect? Give the characteristics and experimental set-up. Explain quantum **8** Raman effect.

b)

Discuss molecular polarizability.

4

	f)	Explain Hund's rule.	4
	g)	Explain polyatomic molecules by using Raman spectroscopy.	4
		Either:	
4.	a)	Discuss Born-Oppenheimer approximation.	8
	b)	Discuss vibrational coarse structure of electronic bands.	4
	c)	Explain Franck Condon principle.	4
OR			
	e)	Explain electronic spectra of diatomic molecules.	4
	f)	Explain dissociation and pre dissociation energies.	4
	g)	Explain the general treatment of molecular orbitals.	4
5.		Answer all the followings.	
		a) Explain spin-spin interaction in NMR.	4
		b) Explain Ammonia MASER.	4
		c) Explain spectra of symmetric top and asymmetric top molecules.	4
		d) Explain and give the examples Hund's coupling cases.	4
