M.Sc. II (Physics) (CBCS Pattern) Sem-III **PSCPHYT10 - Core Paper-X : Solid State Physics and Spectroscopy**

P. Pages : 2 Time : Three Hours		2 GUG/W/22/ nree Hours * 3 8 1 1 * Max. Mark	GUG/W/22/11296 Max. Marks : 80	
		Either:-		
1.	1)	 Calculate the packing fraction in crystal for a) S.C, b) F.C.C c) B.CC, in structure treating the atom as sphere. 	8	
	2)	What is reciprocal lattice? Give vector algebraic discussion of the reciprocal lattice.	8	
		OR		
	a)	Explain Miller indices with examples.	6	
	b)	Explain bonding of common crystal structure.	10	
		Either:-		
2.	1)	Discuss point defect, line defects and stacking faults.	10	
	2)	Write a short note on polarization mechanisms.	6	
		OR		
	a)	Derive Clausius – Mossottie equation	8	
	b)	Explain presence of dislocation. Also discuss perfect and imperfect dislocations.	8	
		Either:-		
3.	1)	Discuss quantum state of an electron in an atom.	6	
	2)	Discuss the relativistic corrections for energy levels of hydrogen atom.	10	
		OR		
	a)	Derive interaction energy in case of is and jj couplings.	8	
	b)	Define Franck-Condon principle. How does it monitor intensities in electronic bands?	8	
		Either:-		
4.	1)	Explain Raman effect describe the theory and experimental set up to study Raman effect.	8	
	2)	In an experimental in the study of Raman effect using H2. green radiation of wavelength 546. 1nm, a stokes line of wavelength 554.3nm was observed. Find Raman shift.	4	

3) Describe the NMR Spectroscopy.

OR

- a) Explain the principle of ESR and its experimental technique.
- b) Show that the rotational energy of a diatomic molecule E is related to angular momentum 6 L through the reaction $E = \frac{L^2}{2\mu r^{2'}}$ where μ is the reduced mass and r is the internuclear distance.
- c) The CO molecule has a bond length of 0.113m and mass of ${}_{6}C^{12}$ and ${}_{8}O^{16}$ atoms are 1.99x10⁻²⁶ kg and 2.66x10⁻²⁶ kg. Find energy in electron volt of the CO molecule when it is in the lowest rotational state.
- **5.** Attempt all the following:

a)	Write a note on liquid crystal.	4
b)	Explain Ferro electricity.	4
c)	Write a short note on Auger transition.	4
d)	What are the salient features of molecular electronic spectra?	4

6