M.Sc.(Physics) (CBCS Pattern) Semester - III PSCPHYT09 - Core Paper-IX : Quantum Mechanics-II

P. Pages: 2

Time : Three Hours

* 1 4 6 4 *

GUG/S/23/11295

Max. Marks: 80

Either

Give first order perturbation theory of non-degenerate system and find the expression of 1. 6 a) energy. Consider the infinite square well defined by v(x) = 0 for $0 \le x \le a$ and $v(x) = \infty$ otherwise. 4 b) Using first order perturbation theory, calculate the energy of the first two states of the potential well if a portion defined by $v(x) = \frac{v_0 x}{a}$ $v_0 = \text{constant}$, $0 \le x \le a$ is sliced off. Explain the application of perturbation theory to ground state energy of the He-atom. c) 6 OR Define stark effect. Explain first order stark effect in the ground and first excited state of e) 8 H-atom. Explain normal and anomalous Zeeman effect. f) 6 2 Explain the splitting of ${}^{1}P \rightarrow {}^{1}S$ transition of an atom placed in a magnetic field B along g) Z-axis. **Either** Explain use of WKB method in barrier penetration. 2. 6 a) Derive the ground state energy of He-atom using variational principle. b) 6 Estimate the ground state energy of a one-dimensional harmonic oscillator of mass 'm' c) 4 and angular frequency ' ω ' using a Gaussian trial function $\phi(x) = A \exp(-\alpha r^2)$.

OR

- e) Discuss time dependent perturbation theory.
- f) A system in an unperturbed state n is suddenly subjected to a constant perturbation H'(r) 4 which exists during time $0 \rightarrow t$. Find the probability for transition from state n to state k and show that it varies simple harmonically with angular frequency = $\frac{E_k - E_n}{2\hbar}$ and

Amplitude =
$$4 \frac{|\mathbf{H}'_{kn}|^2}{(\mathbf{E}_k - \mathbf{E}_n)^2}$$
.

g) Derive the relation between absorption and induced emission on the basis of timedependent perturbation theory. 6

6

		Either	
3.	a)	Explain Born-Oppenheimer approximation in scattering.	6
	b)	Discuss scattering cross-section in laboratory and centre of mass system.	6
	c)	 In a scattering experiment, the potential is spherically symmetric and the particles are scattered at such energy that only S & P wave need be considered : i) Show that, the differential cross section σ(θ) can be written in the form 	4
		$\sigma(\theta) = a + b\cos\theta + c\cos^2\theta$	
		ii) What are the values of a, b, c in terms of phase shifts.	
		OR	
	e)	Derive the expression of wavefunction and energy of the ortho and para states of the He- atom and their perturbation by coulomb repulsion.	8
	f)	Explain the Heitler-London theory of H-molecule.	6
	g)	N non-interacting bosons are in an infinite potential well defined by $v(x) = 0$ for $0 < x < a$; $v(x) = \infty$ for $x < 0$ and for $x > a$. Find the ground state energy of the system. What would be the ground state energy if the particles are fermions.	2
		Either	
4.	a)	Derive Kelvin-Gordon equation for a free particle.	6
	b)	Show that the following matrices form a representation of Dirac's matrices. $\alpha_{x} = \begin{pmatrix} \sigma_{x} & 0 \\ 0 & -\sigma_{x} \end{pmatrix}, \alpha_{y} = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}, \alpha_{z} = \begin{pmatrix} \sigma_{z} & 0 \\ 0 & -\sigma_{z} \end{pmatrix} \beta = \begin{pmatrix} 0 & iI \\ -iI & 0 \end{pmatrix}$	2
	c)	For a relativistic electron in central potential, show that the spin-orbit interaction comes out automatically from Dirac's equation.	8
		OR	
	e)	Prove that, a Dirac electron has a magnetic moment $\mu = \frac{e\hbar\sigma}{2mc}$	6
	f)	Discuss the solution for H-atom in Dirac theory.	8
	g)	Prove that, the operation $c\alpha$, where α stands for Dirac matrix, can be interpreted as the velocity operator.	2
5.		Attempt all the following:	
		a) Calculate the 1 st order energy correction for an harmonic oscillator.	4
		b) Explain Dipole approximation.	4
		 c) Interprete the concept of Identical particles. What is difference between Boson and Fermions. 	4
		d) Give physical significance of negative energy states.	4

GUG/S/23/11295