M.Sc.S.Y. (Physics) (CBCS Pattern) Sem-III **PSCPHYT09 - Core Paper-IX - Quantum Mechanics-II**

	Pages:		//22/11295
Tim	ne : Thr 	ree Hours	Marks : 80
		Either	
1.	a)	Explain the application of perturbation theory to ground state energy.	8
	b)	Give first order perturbation theory of non-degenerate system and find the expression energy and wave function. OR	n of 8
	c)	Define Stark effect. Explain first order stark effect in the ground state and first excite state of the H-atom.	d 8
	d)	Define normal and anomalous Zeeman effect. Explain these effects with neat energy diagram.	8
		Either	
2.	a)	Discuss time dependent perturbation theory and derive the expression of Fermi-Gold-rule of probability transition.	en 8
	b)	What are Einstein A and B coefficients. Derive equation for them.	8
		OR	
	c)	What is mean by barrier penetration? Explain use of WKB method in barrier.	8
	d)	Explain the variational principle. Calculate the ground state energy of He atom using variational principle.	8
		Either	
3.	a)	Explain Born approximation in scattering and discuss its validity.	8
	b)	Derive the expression of wave function and energy of the ortho and parastates of the Helium atom and their perturbation by coulomb repulsion. OR	8
	c)		8
		Discuss scattering from an exponential potential of the form $V(r) = -V_0 e^{-r/a}$. Discuss scattering cross-section in laboratory and centre of mass system.	8
	d)	Discuss scattering cross-section in laboratory and centre or mass system.	O
		Either	
4.	a)	What are the short comings of Klein-Gordon relativistic equation of free particle?	8
	b)	Explain spin-orbit interaction for Dirac's particles. OR	8
	c)	Write down the Dirac equation for a free particle construct matrices for $\alpha_x, \alpha_y, \alpha_z$ a	$nd \beta$. 8
	d)	Discuss the solution for hydrogen atom in Dirac's theory.	8
5.		Attempt all the followings.	
		a) Explain second order Stark effect in an harmonic oscillator.	4
		b) Explain Yukawa potential in deuteron.	4
		c) Write a note on identical particles.	4
		d) Give the physical significances of negative energy states.	4
