M.Sc. (Physics) (CBCS Pattern) Sem-III PSCPHYT09 - Core Paper-IX - Quantum Mechanics-II

P. Pages : 2 Time : Three Hours			GUG/W/22/112 Max. Marks :	
1.	a)	Either: Define degenerate states. How perturbation theory is applied to ground energy	gy state.	8
	b)	Calculate the first order energy correction for an-harmonic oscillator.		8
	,	OR		
	e)	Explain normal and anomalous Zeeman effect with neat diagram.		8
	f)	Define stark effect. Explain first order stark effect in the ground and first exe H-atom.	cited state of	8
2.	a)	Either: Explain transition rate in time dependent perturbation in radiative transitions	i.	8
	b)	Discuss time dependent perturbation theory and derive the expression of Fer rule of probability transition.	mi-Golden	8
		OR		
	e)	What is W.K.B. approximation? Discuss the conditions of applicability of the approximation.	e W.K.B.	8
	f)	Explain variational principle in ground state of He-atom.		8
3.	a)	Either: Explain scattering theory of quantum particle using partial wave analysis.		8
	b)	Explain Heitler – London theory of the hydrogen molecule.		8
		OR		
	e)	What is resonance scattering? Discuss the expression for the scattering cross resonance.	-section at the	8
	f)	Discuss scattering cross-section in laboratory and centre of mass system.		8
4.	a)	Either: Derive Klein Gordon relativistic equation for a free particle.		8
	b)	Explain spin-orbit interaction for Dirac's particles.		8
		OR		

OR

e)	Prove that Dirac's electron has a magnetic dipole moment. $\vec{\mu} = \frac{\mathbf{e} \cdot \hbar \cdot \vec{\mathbf{r}}}{2 \cdot \mathbf{m} \cdot \mathbf{c}}$	8
f)	Define Dirac Hamiltonian for the relativistic particle. What are the properties of α and β .	8
	Answer all the followings:	
a)	Explain second order stark effect in an harmonic oscillator.	4
b)	What are Einstein's A and B coefficients? Give their relation.	4
c)	Explain 'Ortho' and 'Para' states of the helium atom.	4
d)	Give the physical significance of negative energy states.	4

5.