M.Sc. (Chemistry) (CBCS Pattern) Sem-II **PSCCHT07 - Physical Chemistry**

P. Pages: 2 Time: Three Hou			GUG/W/22/11230 Max. Marks : 80	
1.	a)	Discuss HMO theory by applying to 1, 3 butadiene and ethylene molecule.	ale. 8	
	b)	Discuss the application of molecular orbital theory to H_2^+ molecule.	8	
		OR		
	c)	Explain Zeeman splitting.	4	
	d)	Discuss Rassel – sanders coupling.	4	
	e)	Use 25 and 2P atomic orbitals to construct SP – hybrid orbitals.	4	
	f)	Using perturbation theory obtain the ground state energy of helium atom.	4	
2.	a)	Discuss Stirling approximation. Derive an expression for Fermi – Dirac stat	tistics. 8	
	b)	Describe Debye – Huckel theory for activity co-efficient's of electrolytic so	olutions. 8	
		OR		
	c)	Discuss Bose – Einstein statistics.	4	
	d)	Derive an expression for entropy of miking and enthalpy of mixing of non-solutions.	ideal 4	
	e)	Discuss any one method for the determination of activity and activity coeffi	cient. 4	
	f)	Write a note on Le – Chateliers principle.	4	
3.	a)	Discuss the thermodynamics of Frenkel and Schottky defects.	8	
	b)	i) Discuss the co – precipitation as a precursor to solid state reaction	8	
		ii) Describe the B. C. S. theory.		
		OR		
	c)	Write a note on colour centres.	4	
	d)	Discuss the Kinetics of solid state reaction.	4	
	e)	Explain super conductor's and meissner effect.	4	
	f)	Write down in brief about electronic structure of solids.	4	

4.	a)	Write a note on.	8	8
		i) GM – counter.		
		ii) Scintillation counter.		
	b)	Discuss isotopic dilution analysis and NAA.	8	8
		OR		
	c)	Write a note on liquid drop model.	4	4
	d)	Explain semi – empirical mass equation.	4	4
	e)	Discuss thermonuclear reactions.	4	4
	f)	Explain radiometric titration.	4	4
5.	a)	State variation principle.	2	2
	b)	Define Spin orbit coupling.	2	2
	c)	Calculate the mean activity coefficient of 0.01 M NaCl solution at 25°C.	2	2
	d)	What is general principles of solid state reaction?	2	2
	e)	Explain perfect crystal.	2	2
	f)	Write a note on $P - n$ junction.	2	2
	g)	What is meant by radioactive decay?	2	2
	h)	Give the application of liquid drop model.	2	2
