M.Sc. F.Y. (Physics) (CBCS Pattern) Sem-II PSCPHYT07 - Paper-VII (Core-VII) : Classical Mechanics

P. Pages : 2 Time : Three Hours			GUG/W/22/11222 Max. Marks : 80	
 1.	a)	Either What is D'Alembert's principle?	3	
	b)	An inextensible strings of negligible mass hanging over a smooth pulley B. Concepts one mass m; on a friction less inclined plane of angle θ to another mass m ₂ using	5	
		D'Alembert's principle prove that the masses will be in equilibrium, if $\sin \theta = \frac{m_2}{m_1}$		
	c)	Derive Lagrange's equation from D'Alembert's principle for conservative system.	8	
		OR		
	e)	Deduce Hamilton's equations and Lagrange's equation from variational principle for non- conservative system.	10	
	f)	Find the equation of motion and force of constraint in case of simple pendulum by using Lagrange's method of undetermined multiplier's.	6	
2.	a)	Either Show that if a co-ordinate corresponding to a rotation is cycle, Rotation of the system about the given axis has no effect on the description of the system motion i.e. angular momentum is conserved.	8	
	b)	By using Hamilton dynamics write down the equation of motion of a particle in a central force field.	8	
		OR		
	e)	Define 'Hamiltonian principle'. Obtain Hamilton's canonical equation of motion.	8	
	f)	Show that the Poisson bracket of two variables is invariant under a canonical transformation.	8	
3.	a)	Either What is meant by 'Laboratory system' and the 'Centre of mass system' in a two body scattering problem? How will you transform the differential cross-section, energy and scattering angle from the Centre of mass system to the Laboratory system?	8	
	b)	A particle describing a closed orbit under the influence of a central force. Derive the quantities which remain invariant during the motion. Show that total energy and angular momentum of a particle under a central force is conservative. Also show that rate at which the area is swept out by the radius vector is constant.	8	

	e)	Show that total energy and angular momentum of a particle under a central force is conservative. Also show that rate at which the area is swept out by the radius vector is constant.	8
	f)	Obtain an expression for the reduced mass of the system.	8
		Either	
4.	a)	State and prove Euler's theorem.	8
	b)	What do you understand by Normal co-ordinates and normal modes of Vibrations?	8
		OR	
	e)	Explain Periodic motion in small oscillations.	8
	f)	Defining principle axes and principal moment of inertia. Find the principal axes and their associated moments of inertia for a cube of mass 'M' & side 'a'.	8
5.		Answer all the following.	
		a) What are constraints? Classify the constraints with some example.	4
		b) Define scattering cross section, scattering angle ϕ and Impact Parameter.	4
		c) What is stability of orbit? Also write the conditions for the closure.	4
		d) Explain the term "Principal axes transformation".	4
