Notes: 1. All questions carry equal marks.
2. Assume suitable data wherever necessary.
3. Illustrate your answers wherever necessary with the help of neat sketches.

Either:

1. a) What is wave packet? How it represent analytically and diagrammatically prove that velocity of a particle and velocity of corresponding wave pocket are same.
b) Derive an equation of continuity for probability. Evaluate probability current of wave function.

$$
\psi=\frac{\mathrm{A}}{\mathrm{r}} \mathrm{e}^{\mathrm{ikr}}
$$

OR

e) i) What is stationary state. Show that probability current density is constant in time.
ii) For one dimensional wave function of the form $\psi(\mathrm{x}, \mathrm{t})=\mathrm{A} \exp [\mathrm{i} \phi(\mathrm{x}, \mathrm{t})]$, derive eigen values for above function.
f) Derive an expression for time dependent Schrodinger wave equation for particle.

Either:

2 a) Define Hermitian Operator.
Show that : i) He eigen value of Hermitian operator are real.
ii) Eigen function belonging to different eigenvalue are orthogonal.
b) Explain the different postulate of quantum medonics.

OR

e) i) Define the uncertainty ($\Delta \mathrm{A}$) in the measurement of a dynamical variable state \& explain the general uncertainty principle.
ii) The wave function of a particle is

$$
\psi(\mathrm{x})=\mathrm{N} \exp \left(\frac{-\mathrm{x}^{2}}{2 \mathrm{a}}\right)
$$

find $\Delta \mathrm{x} \& \Delta \mathrm{Px}$. Hence evaluate the uncertainty product $(\Delta \mathrm{x}) .(\Delta \mathrm{Px})$
f) Derive an Heisenberg eigen equation of a motion.

Either:
3. a) Obtain the eigen value for $L^{2} \&$ expression for L^{2} in spherical polar co-ordinates.
b) Derive the general solution for one dim. Linear harmonic oscillator.
e) i) What is parity operator.
ii) Explain the role of L^{2} operator in central force problem.
f) Write the Schrodinger equation and the form of wave function in the different region of square well with finite depth.

Either:

4. a) i) Explain representation of angular momenta. Derive matrices for J_{x}, J_{y}, J_{+}and J_{-}for $\mathrm{J}=1$.
ii) Derive matrices for the operator $J^{2}, J_{x}, J_{y}, J_{z}$ for $j=3 / 2$.
b) Solve the following.
i) $\left[\mathrm{L}_{x}^{2}, \mathrm{~L}_{\mathrm{y}}\right]$
ii) $\left[L_{y}, L_{z}^{2}\right]$
iii) $\left[L_{y}, L_{x}\right]$

OR

e) Obtain the Clebsch - Gordan coefficient for the system having $j=1 \& j_{z}=1 / 2$.
f) Evaluate the following commutators.
i) $\left[\mathrm{J}_{\mathrm{z}}^{2}, \mathrm{~J}_{\mathrm{y}}\right],\left[\mathrm{J}_{\mathrm{x}}^{2}, \mathrm{~J}_{\mathrm{y}}\right],\left[\mathrm{J}^{2}, \mathrm{~J}_{\mathrm{z}}\right]$
ii) What is meant by raising \& lowering operators. Solve $\langle\mathrm{n}| \mathrm{aa}^{+} \mathrm{aa}^{+}|\mathrm{n}\rangle$ and $\langle n| a^{+} a \mathrm{a} a|\mathrm{n}\rangle$.
5. Attempt all the followings.
a) The wave function $\psi(x)=A \sin (n \pi x / L)$ normalize the wave function \& evaluate the expectation value of its momentum.
b) Prove the eigen value of $\mathrm{A} \& \mathrm{~A}^{\prime}$ are same.
c) Show that the component of angular momentum operator do not commutes among themselves.
d) Prove that:
i) $\left[\sigma_{x}, \sigma_{y}\right]=2 \mathrm{i} \sigma_{z}$
ii) $\sigma_{x} \sigma_{y} \sigma_{z}=i$

