M.Sc. F.Y. (Physics) (CBCS Pattern) Sem-II **PSCPHYT05 - Paper-V (Core-V) : Quantum Mechanics-I**

P. Pages : 2

Time : Three Hours

*	0	4	8 3	3	*

Max. Marks : 80

	Note	 es: 1. All questions carry equal marks. 2. Assume suitable data wherever necessary. 3. Illustrate your answers wherever necessary with the help of neat sketches. 				
	Eith	ner:				
1.	a)) What is wave packet? How it represent analytically and diagrammatically prove that velocity of a particle and velocity of corresponding wave pocket are same.				
	b)	Derive an equation of continuity for probability. Evaluate probability current of wave function.				
		$\psi = \frac{A}{r} e^{ikr}$				
		OR				
	e)	i) What is stationary state. Show that probability current density is constant in time.	6			
		ii) For one dimensional wave function of the form $\psi(x,t) = A \exp[i\phi(x,t)]$, derive eigen values for above function.	4			
	f)	Derive an expression for time dependent Schrodinger wave equation for particle.	6			
	Eith	ner:				
2	a)	Define Hermitian Operator. Show that : i) He eigen value of Hermitian operator are real. ii) Eigen function belonging to different eigenvalue are orthogonal.				
	b)	Explain the different postulate of quantum medonics. OR	8			
	e)	i) Define the uncertainty (ΔA) in the measurement of a dynamical variable state & explain the general uncertainty principle.	6			
		ii) The wave function of a particle is $\psi(x) = N \exp\left(\frac{-x^2}{2a}\right)$ find $\Delta x \& \Delta Px$. Hence evaluate the uncertainty product $(\Delta x).(\Delta Px)$	6			
	Ð	Derive an Heisenberg eigen equation of a motion.	4			
	f)	Derive an Heisenberg eigen equation of a motion.	4			
	Eith	ner:				
3.	a)	Obtain the eigen value for L^2 & expression for L^2 in spherical polar co-ordinates.	8			
	b)	Derive the general solution for one dim. Linear harmonic oscillator. OR	8			

- e) i) What is parity operator.
 - ii) Explain the role of L^2 operator in central force problem.
- f) Write the Schrodinger equation and the form of wave function in the different region of square well with finite depth.

Either:

- 4. a) i) Explain representation of angular momenta. Derive matrices for J_x, J_y, J_+ and J_- for 10 J=1.
 - ii) Derive matrices for the operator J^2 , J_x , J_y , J_z for j = 3/2.
 - b) Solve the following.
 - i) $\left[L_x^2, L_y\right]$
 - ii) $\left[L_{y}, L_{z}^{2}\right]$
 - iii) $\begin{bmatrix} L_y, L_x \end{bmatrix}$

OR

e) Obtain the Clebsch – Gordan coefficient for the system having $j=1 \& j_z = \frac{1}{2}$. 8

f) Evaluate the following commutators.

i)
$$[J_z^2, J_y], [J_x^2, J_y], [J^2, J_z]$$
 4

ii) What is meant by raising & lowering operators. Solve $\langle n | a a^+ a a^+ | n \rangle$ and $\langle n | a^+ a a a | n \rangle$.

- **5.** Attempt all the followings.
 - a) The wave function $\psi(x) = A \sin(n \pi x / L)$ normalize the wave function & evaluate the expectation value of its momentum.
 - b) Prove the eigen value of A & A' are same.
 - c) Show that the component of angular momentum operator do not commutes among themselves.
 - d) Prove that :
 - i) $\left[\sigma_{x}, \sigma_{y}\right] = 2i\sigma_{z}$ ii) $\sigma_{x}\sigma_{y}\sigma_{z} = i$

4

4