M.Sc. (Chemistry) (CBCS Pattern) Sem-I PSCCHT03 / CHE103 - Physical Chemistry Paper-III

P. F Tin	Pages : ne : Thr	3 ree Hours $* 1939 *$	GUG/W/22/11185 Max. Marks : 80
	Note	 All questions are compulsory and carry equ Use of log table and calculators is permitted 	al marks. 1
1.	a)	Determine which of the following functions are the $\frac{d^2}{dx^2}$	eigen functions of the operator 8
		i) $\sin 3x$ ii) kx^2	
		iii) $\exp(-ax^2)$ iv) cosk:	X
	b)	Set up the Schrodinger wave equation for a simple h energy eigen values.	armonic oscillator and solve it for 8
	c)	In the following equations	4
		$A\Psi_1 = \lambda_1 \psi_1$ and $A\Psi_2 = \lambda_2 \psi_2$ If A is a Hermitian of	perator then prove that $\lambda_1 \text{and} \lambda_2$ are
		real numbers and Ψ_1 and Ψ_2 are orthogonal to each	other provided $\lambda_1 \neq \lambda_2$.
	d)	What are the postulates of quantum mechanics?	4
	e)	Explain the degeneracy of energy levels by using ca box.	se of particle in three dimensional 4
	f)	Derive the expression for the energy of rigid rotor by	y using Schrodinger wave equation. 4
2.	a)	Derive maxwell relations and give an application of	one of them. 8
	b)	What is meant by chemical potential? How does che and pressure? Derive the Gibbs Duhem equation.	emical potential vary with temperature 8
		OR	
	c)	Define partial molar quantities. How it is determined	1? 4
	d)	What are the homogenous function of degree zero at intensive properties of the following enthalpy, densi volume.	and one? Identify the extensive and 4 ty, chemical potential refractive index,
	e)	Derive any one thermodynamic equation of state.	4
	f)	Introduce the concept of fugacity for non – ideal gas Vander – Waals gas.	and derive its expression for a 4

3.	a)	Explain two component system in which the two components form a compounds with
		incongruent melting points.

b) Discuss the first and second order phase transitions and lambda line observed in liquid helium.

OR

- c) Derive phase rule thermodynamically.
- d) Discuss the phase diagram of systems exhibiting formation of two pairs of partially miscible liquids.
- e) Explain phase diagram of one component system of carbon.
- f) Identify the phases present in the numbered areas of following figures.

4.	a)	Discuss collision theory of bimolecular reaction. What are limitations of this theory?	8
	b)	Discuss the kinetics of the following photochemical reaction. 2H1 $\xrightarrow{h\nu}$ H ₂ +1 ₂	8

OR

c) The following mechanism has been proposed for enzyme catalysis.

$$E+S \xrightarrow{K_1} ES$$
$$ES \xrightarrow{K_2} P+E$$

Using Steady State approximation for [ES], show that the reaction rate is given by

$$r = \frac{K_2[E]_o[S]}{K_m + [S]}$$

where the symbols have their used meanings.

d) Discuss in detail the transition state theory of reaction rates.
e) Write short note on.

i) Photosensitization.
ii) Quenching

f) Derive Michaelis – Menten equation:

4

8

8

4

4

4

4

- 5. a)
- Explain the term.i) Normalisation.
 - ii) Orthogonality

b)	Show that $\begin{bmatrix} AB \end{bmatrix} = -\begin{bmatrix} BA \end{bmatrix}$	2
0)	Show that $\lfloor AB \rfloor = - \lfloor BA \rfloor$	

2

c)State and explain third law of thermodynamics.2d)The N2O molecule has two possible orientation. Calculate Residual entropy.2e)Explain reduced phase rule.2f)Calculate the number of degree of freedom.
i)
$$PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$$

where $P_{PCl_3} = P_{Cl_2}$
ii) $H_2O_{(s)} \rightleftharpoons H_2O_{(1)} \rightleftharpoons H_2O_{(g)}$ 2g)What are different types of catalysis? Give example of each type.2h)Explain the effect of temperature on reaction rates.2
