M.Sc.(Physics) (CBCS Pattern) Semester - I PSCPHYT04 - Core Paper-IV : Electrodynamics-I

P. F Tin	Pages : ne : Thi	2 ree Hours $* 1 3 6 0 *$	GUG/S/23/11182 Max. Marks : 80
		Either:	
1.	a)	State and explain Gauss law and write its differential form.	6
	b)	State and explain coulomb's law in vector form.	4
	c)	Derive an expression for electrostatic potential energy.	6
		OR	
	e)	Discuss Dirac Delta function and its properties.	8
	f)	What is Coulomb's law and explain it for continuous charge distribution.	8
		Either:	
2.	a)	State and prove first and second uniqueness theorem.	8
	b)	Write the Laplace equation in spherical polar co-ordinates. Assuming the independent of ϕ . Solve the equation by variable separation and show that	potential v Is 8
		$V(r,\theta) = \sum_{\ell=0}^{\infty} \left(A_{\ell} r^{l} + \frac{B_{\ell}}{r^{\ell+1}} \right) P_{\ell} (\cos \theta)$	

OR

	e)	What is Green's theorem? Discuss applications of green theorem.	8			
	f)	Discuss the method of separation of variables in Cartesian co-ordinates.	8			
		Either:				
	a)	Define vector potential A. show that if the divergence of A is zero then the vector potential satisfies the Poisson equation, also give the solution of Poisson equation.	8			
	b)	Find the divergence and curl of magnetic field B in case of volume current.	8			
OR						
	e)	Find the magnetic field inside and outside the solenoid consisting of n closely wound turns per unit length on a cylinder of radius R and carrying a steady current I.	8			
	f)	Explain magnetostatic boundary conditions.	8			

3.

Either:

4.	a)	State Faraday's Law of electromagnetic induction and give the integral form and differential form of the law.		8				
	b)	State and prove Poynting theorem.		8				
	OR							
	e)	Derive Maxwell's equation in matter.		8				
	f)	Give physical significance of Maxwell's equation and derive integral form of Maxwell's equation.		8				
5.		Explain the followings:						
		a)	Derive Poisson's and Laplaces equation.	4				
		b)	Discuss method of image for classical image problem.	4				
		c)	Show that the magnetic field is given by curl of a vector potential.	4				
		d)	"The electric field does not remains conservative when the magnetic field varies with time." from this statement.	4				
