M.Sc.- I (Physics) (CBCS Pattern) Sem-I PSCPHYT04 - Paper-IV - Core-IV : Electrodynamics-I

P. Pages : 2 Time : Three Hours		2 ree Hours $* 1936*$	GUG/W/22/11182 Max. Marks : 80
		Either :	
1.	a)	State and explain Coulomb's law in vector form.	4
	b)	Derive the equation for electrostatic energy of a continuous charge distribu	tion. 6
	c)	Find the electric field a distance z above the midpoint of a straight line segned 2L, which carries a uniform line charge λ	nent of length 6
	e)	State and explain Gauss's law.	4
	f)	Find the electric field for a infinite plane which carries a uniform surface cl	harge σ . 4
	g)	Show that the electric field E is the gradient of scalar potential V ie. $E = -$ the potential inside an outside a spherical hell of radius r which carries unif charge.	∇V and find 8 Form surface
		Either :	
2.	a)	Derive the general solution for spherical coordinates of separation of varial	bles. 8
	b)	Find the potential inside the sphere, if $V_0(\Theta)$ is specified on the surface of sphere of radius R.	a hollow 8
		OR	
	e)	Explain the origin of coordinates in multipole expansions.	4
	f)	Find the approximate potential at a point far from the dipole, if a electric di two equal and apposite charges separated by a distance d.	pole consist of 4
	g)	State and prove the Green's theorem.	8
		Either :	
3.	a)	State and explain Biot Savart law.	4

	b)	Find the magnetic field of a distances from a long straight wire carrying a steady current I.	8
	c)	Deduce the differential form of Ampere's law.	4
		OR	
	e)	Derive the approximate formula for the vector potential of a localized current distribution.	8
	f)	Explain the magnetostatic boundary condition by relating the current density j, the field B and the potential A.	8
		Either :	
4.	a)	Deuce the differential an integral form of Faradays law.	4
	b) c)	A uniform magnetic field B, pointing straight up, fills the shade circular region as shown in figure. If B is changing with time what is the induced electric field? T T T T T T T T T T	4
	,	ADD	
	e)	Derive the continuity equation.	4
	f)	State and prove Poynting theorem, give its differential form and hence define Poynting vector.	8
	g)	Explain Gauge transformation.	4
5.	a)	Derive Poisson's equation and Laplace's equation.	4
	b)	Explain boundary conditions and uniqueness theorems in short and state the first and second uniqueness theorems.	4
	c)	Explain in brief magnetic vector potential.	4
	d)	Deduce the differential formulation for conservation of momentum.	4
