M.Sc.(Physics) (CBCS Pattern) Semester - I
 PSCPHYT02 - Core Paper-II : Complex Analysis and Numerical Methods

P. Pages : 2

GUG/S/23/11180
Time : Three Hours
t 13588 t
Max. Marks : 80

Either:

1. a) Find the modulus and argument of the following complex numbers.
i) $\frac{1+2 \mathrm{i}}{1-(1-\mathrm{i})^{2}}$
ii) $\frac{(1+\mathrm{i})^{2}}{1-\mathrm{i}}$
b) Prove that modulus of the sum of two complex numbers does not exceed the sum of their moduli.

OR

e) State and prove Cauchy theorem.
f) State and prove Cauchy integral formula.

Either:

2. a) Determine the poles and the residue at each pole of the function.
i) $f(z)=\frac{z^{2}}{(z-1)^{2}(z+2)}$
ii) $\mathrm{f}(\mathrm{z})=\cot \mathrm{z}$
b) Define singular point. Differentiate between isolated and non isolated singularity.

OR
e) How one can find the residue.
i) At simple pole
ii) At pole of order n
f) Evaluate the following integral using residue theorem:
i) $\int_{c} \frac{1+z}{z(2-z)} d z$, where C Is circle $|z|=1$.
ii) $\int_{\mathrm{c}} \frac{\mathrm{z}^{2} \mathrm{e}^{\mathrm{zt}}}{\mathrm{z}^{2}+1} \mathrm{dz}$, where $\mathrm{c}:|\mathrm{z}|=2$

Either:

3. a) Explain Bisection method for determination of zero.
b) Obtain the secant general formula for finding the root of the equation.

OR

e) Find the root of the given equation using false position method.
$f(x)=x^{3}-x-4=0$
f) Define finite difference explain the different types of finite difference.

Either:

4. a) Discuss Lagrange's interpolation formula.
b) Obtain the formula for trapezoidal rule.

OR

e) Explain Simpson's $1 / 3^{\text {rd }}$ rule and obtain formula for it.
f) Deduce the formula for Linear least squares.
5. Answer all the followings.
a) Explain complex numbers.
b) Explain branch points.
c) Explain Newton-Raphson method.
d) Write Simpson's $3 / 8^{\text {th }}$ rule.

