M.Sc. (Physics) (CBCS Pattern) Sem-I PSCPHYT02 / PSCPHY02 - Paper-II : Complex Analysis and Numerical Method

	ages : ie : Th		2/11180 arks : 80
		Either:	
1.	a)	State and prove Cauchy theorem.	8
	b)	State and prove Cauchy integral formula.	8
		OR	
	e)	Prove that the condition necessary for a function $f(z) = u + iv$ to be analytic at all the point in a region R are $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$	8
	f)	Determine whether the following function are analytic or not? i) 1/z and	8
		ii) $e^{x}(\cos y + i \sin y)$	
		Either:	
2.	a)	Define the term singularity point. Differentiate between isolated and non isolated singularity.	8
	b)	Find the singularity of the following function.	8
		i) $f(z) = \sin 1/z$	
		ii) $g(z) = \frac{\theta^2}{z^2}$	
		OR	
	e)	How one can find the residue	8
		i) At simple pole	
		ii) At pole of order n	
	f)	Applying calculus of residue, prove that $I = \int_{0}^{2\pi} \frac{\sin^{2} \theta}{a + b \cos \theta} d\theta = \frac{2\pi}{b^{2}} \left[a - \sqrt{\left(a^{2} - b^{2}\right)} \right] \text{ where , } a > b > 0$	8

Either:

3.	a)	Obtain the expression for false position method.	8
	b)	Explain Newton – Raphson Method.	8
		OR	
	e)	Define finite difference. Explain the different types of finite difference.	8
	f)	Deduce the general formula for secant method.	8
		Either:	
4.	a)	Deduce the formula for Newton's Dividend difference.	8
	b)	Obtain the formula for trapezoidal rule.	8
		OR	
	e)	Deduce the formula for Linear least square.	8
	f)	Deduce the general formula for Lagrange's interpolation.	8
5.		All questions are compulsory.	
		a) Explain Complex numbers.	4
		b) Explain Branch points.	4
		c) Find out the root of the given equation using Newton's - Raphson method, $x^3 - 2x - 5$.	4
		d) Explain the Runge – Kutta method.	4
