Either:

1. a) State and prove Cauchy theorem.
b) State and prove Cauchy integral formula.

OR

e) Prove that the condition necessary for a function $f(z)=u+i v$ to be analytic at all the point in a region R are $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$
f) Determine whether the following function are analytic or not?
i) $1 / z$ and
ii) $\quad e^{x}(\cos y+i \sin y)$

Either:

2. a) Define the term singularity point. Differentiate between isolated and non isolated singularity.
b) Find the singularity of the following function.
i) $f(z)=\sin 1 / z$
ii) $g(z)=\frac{\theta^{2}}{z^{2}}$

OR

e) How one can find the residue
i) At simple pole
ii) At pole of order n
f) Applying calculus of residue, prove that
$I=\int_{0}^{2 \pi} \frac{\sin ^{2} \theta}{a+b \cos \theta} d \theta=\frac{2 \pi}{b^{2}}\left[a-\sqrt{\left(a^{2}-b^{2}\right)}\right]$ where,$a>b>0$

Either:

3. a) Obtain the expression for false position method.
b) Explain Newton - Raphson Method.

OR

e) Define finite difference. Explain the different types of finite difference.
f) Deduce the general formula for secant method.

Either:

4. a) Deduce the formula for Newton's Dividend difference.
b) Obtain the formula for trapezoidal rule.

OR

e) Deduce the formula for Linear least square.
f) Deduce the general formula for Lagrange's interpolation.
5. All questions are compulsory.
a) Explain Complex numbers. 4
b) Explain Branch points. 4
c) Find out the root of the given equation using Newton's - Raphson method,
$x^{3}-2 x-5$.
d) Explain the Runge - Kutta method.

