M.Sc.- I (Physics) (CBCS Pattern) Sem-I PSCPHYT02 / PSCPHY02 - Paper-II : Complex Analysis and Numerical Method

	ages . ne : Thi	ree Hours $* 1 9 3 4 *$	Max. Marks : 80
	Note	e : All questions are compulsory and carry equal marks.	
	Eith	er:	
1.	a)	Find the values of c_1 and c_2 such that the function	8
		$f(z) = x^{2} + c_{1}y^{2} - 2xy + i(c_{2}x^{2} - y^{2} + 2xy)$	
		is analytic. Also find F'(z)	
	b)	Evaluate : $\int_{c} \frac{2}{\left(z^2 - 3z + 2\right)} dz$	8
		by using Cauchy's integral formula where C is circle $ z - 2 = \frac{1}{2}$	
		OR	
	e)	Prove that If a function $F(z)$ is analytic and its derivative $F'(z)$ continuous	at all points 8
		inside and an a simple closed curve C, then $\int_{c} f(z) dz = 0$	
	f)	Find the modulus and argument of the following complex numbers	8
	1)	$(1,1)^2$	0
		i) $\frac{1+2i}{1-(1-i)^2}$ ii) $\frac{(1+i)^2}{1-i}$	
	Eith	er:	
2.	a)	How one can find the residue-	8
		i) At simple pole ii) At pole of order n	
	b)	Determine the poles and the residue at each pole of the function $\frac{2}{3}$	8
		i) $F(z) = \frac{z^2}{(z-1)^2(z+2)}$ ii) $F(z) = \operatorname{crt} z$	
		OR	
	e)	Determine the poles of the function z f (z) = $\frac{1}{z^4 + 1}$	8
	f)	Define singularity of a function. Find the singularities of the functions	8
		i) $f(z) = \sin \frac{1}{z}$ ii) $g(z) = \frac{e^{1}/z}{z^{2}}$	

P. Pages : 2

GUG/W/22/11180

Either:

	Eith	ier:				
3.	a)	Using Bisection methods find the root of $x^3 - 5x + 3 = 0$ correct upto 4 decimal places				
	b)	Find the root of equation $\cos x = 3x-1$ using iteration method correct upto 3 decimal places	8			
		OR				
	e)	Obtain the secant general formula for finding the root of the equation.	8			
	f)	Define finite difference. Explain the different types of finite differences.	8			
	Eith	ther:				
4.	a)	Deduce the formula for linear least squares.	8			
	b)	Obtain the general formula for trapezoidal rule and show it graphically.	8			
	OR					
	e)	Explain Simpson's $\frac{1}{3}^{rd}$ rule and obtain the formula for it	8			
	f)	Evaluate $\int_{1}^{2} e^{-x/2} dx$ using Simpson's $1/3^{rd}$ rule	8			
5.		Attempt all of the following				
	a)	Explain Bisection method.	4			
	b)	Explain branch points.	4			
	c)	Define complex number and show that the sum and product of complex number and its conjugate complex are both real.	4			
	d)	What are divided differences?	4			
