Time : Three Hours

Note : All questions are compulsory and carry equal marks.

Either:

1. a) Find the values of $c_{1}$ and $c_{2}$ such that the function
$f(z)=x^{2}+c_{1} y^{2}-2 x y+i\left(c_{2} x^{2}-y^{2}+2 x y\right)$
is analytic. Also find $\mathrm{F}^{\prime}(\mathrm{z})$
b) Evaluate : $\int_{c} \frac{2}{\left(z^{2}-3 z+2\right)} d z$
by using Cauchy's integral formula where $C$ is circle $\mid z-2)=1 / 2$

## OR

e) Prove that If a function $\mathrm{F}(\mathrm{z})$ is analytic and its derivative $\mathrm{F}^{\prime}(\mathrm{z})$ continuous at all points inside and an a simple closed curve $C$, then $\int_{c} f(z) d z=0$
f) Find the modulus and argument of the following complex numbers
i) $\frac{1+2 \mathrm{i}}{1-(1-\mathrm{i})^{2}}$
ii) $\frac{(1+\mathrm{i})^{2}}{1-\mathrm{i}}$

Either:
2. a) How one can find the residue-
i) At simple pole
ii) At pole of order $n$
b) Determine the poles and the residue at each pole of the function
i) $\mathrm{F}(\mathrm{z})=\frac{\mathrm{z}^{2}}{(\mathrm{z}-1)^{2}(\mathrm{z}+2)}$
ii) $\quad \mathrm{F}(\mathrm{z})=\mathrm{crtz}$

## OR

e) Determine the poles of the function $\mathrm{zf}(\mathrm{z})=\frac{1}{\mathrm{z}^{4}+1}$
f) Define singularity of a function. Find the singularities of the functions
i) $f(z)=\sin 1 / \mathrm{z}$
ii) $\mathrm{g}(\mathrm{z})=\frac{\mathrm{e} 1 / \mathrm{z}}{\mathrm{z}^{2}}$

Either:
3. a) Using Bisection methods find the root of $x^{3}-5 x+3=0$ correct upto 4 decimal places
b) Find the root of equation $\cos x=3 x-1$ using iteration method correct upto 3 decimal places

## OR

e) Obtain the secant general formula for finding the root of the equation.
f) Define finite difference. Explain the different types of finite differences.

Either:
4. a) Deduce the formula for linear least squares.
b) Obtain the general formula for trapezoidal rule and show it graphically.

## OR

e) Explain Simpson's $\frac{1}{3}^{\text {rd }}$ rule and obtain the formula for it
f) Evaluate $\int_{1}^{2} e^{-x / 2} d x$ using Simpson's $1 / 3^{\text {rd }}$ rule
5. Attempt all of the following
a) Explain Bisection method.
b) Explain branch points.
c) Define complex number and show that the sum and product of complex number and its conjugate complex are both real.
d) What are divided differences?

