M.Sc.(Physics) (CBCS Pattern) Semester - I PSCPHYT01 - Core Paper-I : Mathematical Physics

P. Pages: 2

Time : Three Hours

Either:

- a) What are curvilinear coordinates. Obtain an expression for divergence of a vector field in Curvilinear coordinate system.
 - b) Find Fourier sine transform of $F(x) = \frac{e - ax}{x}$

OR

- e) What are Scalar and Vector fields? Define
 - i) Time derivatives of vector field
 - ii) Gradient of a Scalar function
 - iii) Divergence and curl of a vector.

f) A vector field defined by

 $\vec{A} = \hat{r}r^n$, where $r = (x^2 + y^2 + z^2)^{1/2}$ and \hat{r} is the unit vector from origin to the point

(x, y, z). Then find divergence and curl of a vector \overrightarrow{A} .

Either:

2. a) State and Prove contraction theorem of Tensor.

- b) Prove the following.
 - i) grad (fg) = $f \times curl \overline{g} + \overline{g} \times curl f + f \nabla \overline{g} + \overline{g} \nabla f$
 - ii) grad (divf) = curl (curl f) $+\nabla^{\wedge}2f$

OR

- e) Explain contravariant, covariant and mixed tensor of rank two. Show that mixed tensor of **8** rank two is not symmetric in coordinate system.
- f) Define a metric or fundamental tensor. Determine the components of the fundamental tensor in cylindrical coordinates.

GUG/S/23/11179

Max. Marks: 80

8

8

8

8

8

		Either:	
3.	a)	State and prove Cayley - Hamilton theorem.	8
	b)	Find the A ⁻¹ of the matrix by using C - H theorem. $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$	8
	e)	If 'A' is a Unitary matrix show that A ^T is also Unitary.	8
	f)	Find a matrix P, which is diagonalizes the matrix. $A = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$ Verify $P^{-1}AP = D$ Where 'D' is the diagonal matrix.	8
		Either:	
4.	a)	Prove that, For Bessel's functions $J_n(x)$. $J_{-n}(x) = (-1)^n J_n(x)$	8
	b)	Prove that, Recurrence formula. $xJ_n' = nJ_n - xJ_{n+1}$	8
		OR	
	e)	Express $F(x) = 4x^3 + 6x^2 + 7x + 2$ in terms of Legendre polynomial.	8
	f)	Prove that, $J_n(x)$ is the coefficient of 'Z ⁿ ' in the expansion of $e^{x/2}(z-1/2)$	8

5. Attempt all the following:

a)	Find the Fourier Sine Transform of $F(x) = e^{-ax}$, for $0 < x < \infty$	4
b)	Define Inner product space and its properties.	4
c)	Prove that, $H'_{2n}(0) = 0$	4
d)	Define divergence of a vector and give its physical meaning.	4
