M.Sc.(Physics) (CBCS Pattern) Semester - I
 PSCPHYT01 - Core Paper-I : Mathematical Physics

P. Pages : 2

Time : Three Hours

* 1

Max. Marks : 80

Either:

1. a) What are curvilinear coordinates. Obtain an expression for divergence of a vector field in Curvilinear coordinate system.
b) Find Fourier sine transform of
$F(x)=\frac{e-a x}{x}$

OR

e) What are Scalar and Vector fields?

Define-
i) Time derivatives of vector field
ii) Gradient of a Scalar function
iii) Divergence and curl of a vector.
f) A vector field defined by (x, y, z). Then find divergence and curl of a vector \vec{A}.

Either:

2. a) State and Prove contraction theorem of Tensor.
b) Prove the following.
i) $\quad \operatorname{grad}(\mathrm{fg})=\mathrm{f} \times \operatorname{curl} \overline{\mathrm{g}}+\overline{\mathrm{g}} \times \operatorname{curl} \mathrm{f}+\mathrm{f} \nabla \overline{\mathrm{g}}+\overline{\mathrm{g}} \nabla \mathrm{f}$
ii) $\operatorname{grad}(\operatorname{divf})=\operatorname{curl}(\operatorname{curl} f)+\nabla^{\wedge} 2 f$

OR

e) Explain contravariant, covariant and mixed tensor of rank two. Show that mixed tensor of rank two is not symmetric in coordinate system.
f) Define a metric or fundamental tensor. Determine the components of the fundamental tensor in cylindrical coordinates.

Either:

3. a) State and prove Cayley - Hamilton theorem.
b) Find the A^{-1} of the matrix by using $\mathrm{C}-\mathrm{H}$ theorem.
$A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$
e) If ' A ' is a Unitary matrix show that A^{T} is also Unitary.
f) Find a matrix P, which is diagonalizes the matrix.
$\mathrm{A}=\left[\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right]$ Verify $\mathrm{P}^{-1} \mathrm{AP}=\mathrm{D}$
Where ' D ' is the diagonal matrix.

Either:

4. a) Prove that, For Bessel's functions $J_{n}(x)$.

$$
\mathrm{J}_{-\mathrm{n}}(\mathrm{x})=(-1)^{\mathrm{n}} \mathrm{~J}_{\mathrm{n}}(\mathrm{x})
$$

b) Prove that, Recurrence formula.

$$
\mathrm{xJ}_{\mathrm{n}}{ }^{\prime}=\mathrm{nJ} \mathrm{~J}_{\mathrm{n}}-\mathrm{xJ}_{\mathrm{n}+1}
$$

OR

e) Express $F(x)=4 x^{3}+6 x^{2}+7 x+2$ in terms of Legendre polynomial.
f) Prove that, $J_{n}(x)$ is the coefficient of ' Z^{n} 'in the expansion of $e^{x / 2}(z-1 / 2)$
5. Attempt all the following:
a) Find the Fourier Sine Transform of $\mathrm{F}(\mathrm{x})=\mathrm{e}^{-\mathrm{ax}}$, for $0<\mathrm{x}<\infty$
b) Define Inner product space and its properties.
c) Prove that, $\mathrm{H}_{2 \mathrm{n}}^{\prime}(0)=0$
d) Define divergence of a vector and give its physical meaning.

