Time : Three Hours

Either:

1. a) What are curvilinear coordinates? Obtain an expression for divergence of a vector field in curvilinear coordinate system.
b) Find Curl and Divergence of \bar{v}

$$
\bar{v}=\frac{x \hat{i}+y \hat{j}+z k}{\sqrt{x^{2}+y^{2}+z^{2}}}
$$

OR

e) What are scalar and vector fields? Define.
i) Time derivatives of vector field
ii) Gradient of a scalar function
iii) Divergence and curl of a vector.
f) A vector field defined by
$\overline{\mathrm{A}}=\hat{\mathrm{rr}}$, where $\mathrm{r}=\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{1 / 2}$ and $\hat{\mathrm{r}}$ is the unit vector from origin to the point (x, y, z). Then find divergence and curl of a vector \vec{A}.

Either:

2. a) State and prove contraction theorem of tensor.
b) Prove the following.
i) $\quad \operatorname{grad}(\overline{\mathrm{f}} \cdot \overline{\mathrm{g}})=\overline{\mathrm{f}} \times \operatorname{curl} \overline{\mathrm{g}}+\overline{\mathrm{g}} \times \operatorname{curl} \overline{\mathrm{f}}+\overline{\mathrm{f}} \cdot \bar{\nabla} \mathrm{g}+\overline{\mathrm{g}} \cdot \nabla \overline{\mathrm{f}}$
ii) $\operatorname{grad}(\operatorname{div} \cdot \overline{\mathrm{f}})=\operatorname{curl}(\operatorname{curl} \overline{\mathrm{f}})+\nabla^{2} \overline{\mathrm{f}}$

OR

e) Explain contravariant, covariant and mixed tensor of rank two. Show that mixed tensor of rank two is not symmetric is any coordinate system.
f) Define a metric or fundamental tensor. Determine the components of the fundamental tensor in cylindrical coordinates.

Either:

3. a) State and prove Cayley - Hamilton theorem
b) Verify Cayley - Hamilton theorem for the matrix
$A=\left[\begin{array}{cc}1 & 2 \\ 2 & -1\end{array}\right]$ and hence find A^{-1}

OR

e) If ' A ' is a unitary matrix. Show that A^{T} is also Unitary.
f) Find a matrix ' P ' which is diagonalizes the matrix.
$\mathrm{A}=\left[\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right]$, verify $\mathrm{P}^{-1} \mathrm{AP}=\mathrm{D}$, where ' D ' is the diagonal matrix.

Either:

4. a) Prove that for Bessels function $J_{n}(x)$

$$
\mathrm{J}_{-\mathrm{n}}(\mathrm{x})=(-1)^{\mathrm{n}} \cdot \mathrm{~J}_{\mathrm{n}}(\mathrm{x})
$$

b) Prove that recurrence formula.

$$
\mathrm{xJ}_{\mathrm{n}^{\prime}}=\mathrm{nJ} \mathrm{~J}_{\mathrm{n}}-\mathrm{xJ} \mathrm{n}_{\mathrm{n}+1}
$$

OR

e) Prove that $\int_{-1}^{+1}\left[P_{n}(x)\right]^{2} d x=\frac{2}{2 n+1}$
f)

Prove that $J_{n}(x)$ is the coefficient of ' Z^{n} ' in the expansion of $e^{\frac{x}{2}\left(z-\frac{1}{2}\right)}$
5. Attempt all the following.
a) Find the Fourier sine transform of $F(x)=e^{-a x}$, for, $0<x<\infty$
b) Define Inner product space and its properties.
c) Find the Inverse Laplace transform of $\frac{\mathrm{s}^{2}-\mathrm{a}^{2}}{\left(\mathrm{~s}^{2}+\mathrm{a}^{2}\right)^{2}}$
d) Prove that, $\mathrm{H}_{2 \mathrm{n}}^{\prime}(0)=0$

