M.Sc. (Physics) (CBCS Pattern) Sem-I **PSCPHYT01 - Paper-I - Core-I : Mathematical Physics**

	Pages : ne : Th	GUG/W/22/112 Aree Hours * 1 9 3 3 * Max. Marks	
	Eitl	 her:	
1.	a)	What are curvilinear coordinates? Obtain an expression for divergence of a vector field in curvilinear coordinate system.	8
	b)	Find Curl and Divergence of \overline{v} $\overline{v} = \frac{x\hat{i} + y\hat{j} + zk}{\sqrt{x^2 + y^2 + z^2}}$	8
		OR	
	e)	 What are scalar and vector fields? Define. i) Time derivatives of vector field ii) Gradient of a scalar function iii) Divergence and curl of a vector. 	8
	f)	A vector field defined by $\vec{A} = \hat{r}\hat{r}$, where $r = \left(x^2 + y^2 + z^2\right)^{1/2}$ and \hat{r} is the unit vector from origin to the point	8
		(x,y,z) . Then find divergence and curl of a vector \overrightarrow{A} .	
	Eitl	her:	
2.	a)	State and prove contraction theorem of tensor.	8
	b)	Prove the following. i) $\operatorname{grad}\left(\overline{f} \cdot \overline{g}\right) = \overline{f} \times \operatorname{curl} \overline{g} + \overline{g} \times \operatorname{curl} \overline{f} + \overline{f} \cdot \overline{\nabla} g + \overline{g} \cdot \nabla \overline{f}$	8
		ii) $\operatorname{grad}\left(\operatorname{div}\cdot\overline{f}\right) = \operatorname{curl}\left(\operatorname{curl}\overline{f}\right) + \nabla^{2}\overline{f}$	
		OR	
	e)	Explain contravariant, covariant and mixed tensor of rank two. Show that mixed tensor of rank two is not symmetric is any coordinate system.	8
	f)	Define a metric or fundamental tensor. Determine the components of the fundamental tensor in cylindrical coordinates.	8
	Eitl	her:	
3.	a)	State and prove Cayley – Hamilton theorem	8
	b)	Verify Cayley – Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} \text{ and hence find } A^{-1}$	8

e) If 'A' is a unitary matrix. Show that A^{T} is also Unitary.

8

- f) Find a matrix 'P' which is diagonalizes the matrix.
 - $A = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$, verify $P^{-1}AP = D$, where 'D' is the diagonal matrix.

8

Either:

4. a) Prove that for Bessels function $J_n(x)$

$$\mathbf{J}_{-n}(\mathbf{x}) = (-1)^n \cdot \mathbf{J}_n(\mathbf{x})$$

8

b) Prove that recurrence formula.

$$xJ_{n'} = nJ_n - xJ_{n+1}$$

8

OR

e) Prove that $\int_{-1}^{+1} [P_n(x)]^2 dx = \frac{2}{2n+1}$

8

f) Prove that $J_n(x)$ is the coefficient of 'Z" in the expansion of $e^{\frac{x}{2}\left(z-\frac{1}{2}\right)}$

8

- **5.** Attempt all the following.
 - a) Find the Fourier sine transform of $F(x) = e^{-ax}$, for, $0 < x < \infty$

4

b) Define Inner product space and its properties.

4

c) Find the Inverse Laplace transform of $\frac{s^2 - a^2}{\left(s^2 + a^2\right)^2}$

4

d) Prove that, $H'_{2n}(0) = 0$

4
