M.Sc. (Mathematics) (CBCS Pattern) Sem-I **PSCMTHT05 - Paper-V : Numerical Analysis**

P. Pages: 2 GUG/W/22/11170 Time : Three Hours Max. Marks: 100 Solve all five questions. Notes : 1. 2. Each questions carry equal marks. UNIT-I Apply Newton's method to the following function 10 1. a) $f(x) = \sqrt{x}, x \ge 0$ $=-\sqrt{-x}$, x < 0With root $\alpha = 0$. What is the behaviour of the iterates? Do they coverage and if so, at what values. b) Assume what f(x), f'(x), f''(x) are continuous for all values of x in some interval 10 containing α and assume $f'(\alpha) \neq 0$. Then prove that if the initial guess x_0 and x_1 are

> chosen sufficiently close to α , the iterates x_n will converges to α . The order of convergence will be $P = \frac{1+\sqrt{5}}{2} \cong 1.62$

Assume f(x), f'(x) and f''(n) continuous for all x in some neighborhood of α and 10 c) assume that $f(\alpha) = 0, f'(\alpha) \neq 0$ then prove that if x_0 is chosen sufficiently close to α the iterates $x_n, n \ge 0$ will converges to α .

OR

10 d) Consider $f(x) = (x-1)(x-\frac{1}{2})$ with $\alpha = 1, \frac{1}{2} < a < 1, b = 2$. Show that for this example the Regula Falsi method is linear with a speed of convergence 2/3

UNIT – II

10 2. Let $x_0, x_1, ----x_n$ be distinct real number and Let f be given real valued a) function with n + 1 continuous derivative on the interval $I_1 = H\{t, x_0, x_1 - - -x_n\}$ with t some given real number. Then prove that there exist $\xi \in I$, with

$$f(t) - \sum_{j=0}^{n} f(x_j) \ell_j(t) = \frac{(t - x_0) - - - (t - x_n) f^{n+1}(\xi)}{(n+1)1}$$

For any two function f and g and any two constant α , β prove that 10 b) $\Delta^{\mathbf{r}} \left[\alpha f(\mathbf{x}) + \beta g(\mathbf{n}) \right] = \alpha \Delta^{\mathbf{r}} f(\mathbf{x}) + \beta \Delta^{\mathbf{r}} g(\mathbf{n})$

- c) Find out Hermite inter polating polynomial for with p(a) = f(a), p'(a) = f'(a)p(b) = f(b), p'(b) = f'(b)
- d) For the basis functions $\ell_{j,n}(x)$ Prove that for any $n \ge 1 \sum_{j=0}^{n} \ell_{j,n}(x) = 1$

For all x

UNIT – III

3. a) Obtain the Chebyshev linear polynomial approximation to the function $f(x) = x^3 on[0,1]$ 10

b) To obtain a minimax polynomial approximation $a_1^*(x)$ to e^x on the interval [-1, 1]

OR

- c) Apply economization twice to obtain the linear approximation in the following cases 10 $f(x) = e^{x}, p_{3}(x) = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!}$ and $\left\| e^{x} - p_{3}(x) \right\| = 0.0516$
- d) Using weight functions w(x)=1 on the interval [-1, 1] construct first two term of the sequence of orthogonal polynomial by Gram Schmidt process. 10

UNIT – IV

4.	a)	Obtain Peano Kernel formulation of the error for simple trapezoidal rule.	10
	b)	Obtain the expression for the Bernoulli Polynomial $\beta_n(x), n = 1, 2, 3, 4$	10
		OR	
	c)	Show that when Simpson's rule is applied to $\int_0^{2\pi} \sin x dx$, there is a zero error, assuming	10

no rounding error. Also show that Simpson's rule is exact for $\int_0^{2\pi} \cos^2 x dx$

d) Obtain Newton – cotes integration formula for n = 1.

- 5. a) Let g(x) be continuous on the interval $a \le x \le b$ and assume that $a \le g(n) \le b$ for every $a \le x \le b$ then x = g(x) has at least one solution in [a, b]
 - b) Obtain the expression for $p_1(x)$ by Lagrange interpolation.
 - c) For $f, g \in c[a, b]$ then prove that $\|f + g\|_2 \le \|f\|_2 + \|g\|_2$ 5
 - d) Obtain Simple trapezoidal Rule.

2

10

5

5

10