Notes: 1. Solve all five questions.
2. Each question carries equal marks.

UNIT - I

1. a) Let A be an operator then prove the following statements are equivalent.
i) $\operatorname{det} \mathrm{A} \neq 0$
ii) $\operatorname{ker} \mathrm{A}=(0)$
iii) A is one-one
iv) A is onto
v) A is invertible
b) Let $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots \ldots, \mathrm{e}_{\mathrm{m}}\right\}$ be the basis of a vector space. If $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots . ., \mathrm{v}_{\mathrm{r}}\right\}$ is a linearly independent set in E then prove that $\mathrm{r} \leq \mathrm{m}$.

OR

c) Let T be an operator for an n -dimensional vector space E . If the characteristic polynomial of T - has n distinct real roots. Then prove that, T can be diagonalized.
d) Solve the initial value problem for the system
$\mathrm{x}_{1}^{\prime}=\mathrm{x}_{1}, \mathrm{x}_{2}{ }^{\prime}=\mathrm{x}_{1}+2 \mathrm{x}_{2}, \mathrm{x}_{3}{ }^{\prime}=\mathrm{x}_{1}-\mathrm{x}_{3}$
$\mathrm{x}(0)=\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right)$
UNIT - II
2. a) Let $\mathrm{T}: \mathrm{E} \rightarrow \mathrm{E}$ be an operator on a non real vector space with distinct non real eigen values $\mu_{1}, \bar{\mu}_{1}, \mu_{2}, \bar{\mu}_{2}, \ldots \ldots . . \mu_{\mathrm{S}}, \bar{\mu}_{\mathrm{S}}$ then prove that there is an invariant direct sum decomposition for E and a corresponding direct sum decomposition for T .

$$
\begin{aligned}
& \mathrm{E}=\mathrm{E}_{1} \oplus \mathrm{E}_{2} \oplus------\oplus \mathrm{E}_{\mathrm{S}} \\
& \mathrm{~T}=\mathrm{T}_{1} \oplus \mathrm{~T}_{2} \oplus-------\oplus \mathrm{T}_{\mathrm{S}}
\end{aligned}
$$

Such that each E_{i} is 2-Dimensional and $\mathrm{T}_{\mathrm{i}} \in \mathrm{L}\left(\mathrm{E}_{\mathrm{i}}\right)$ has eigen value $\mu_{\mathrm{i}}, \bar{\mu}_{\mathrm{i}}$
b) Let $\mathrm{P}, \mathrm{S}, \mathrm{T}$ denotes operator on R^{n} then prove that,
i) If $\mathrm{Q}=\mathrm{PTP}^{-1}$ then $\mathrm{e}^{\mathrm{Q}}=\mathrm{Pe}^{\mathrm{T}} \mathrm{P}^{-1}$
ii) If $S T=T S$ then $e^{S+T}=e^{S} \cdot e^{T}$
iii) $\mathrm{e}^{-5}=\left(\mathrm{e}^{\mathrm{s}}\right)^{-1}$

OR

c)

Let $\sum_{j=0}^{\infty} A_{j}=A$ and $\sum_{k=0}^{\infty} B_{k}=B$ be an absolutely convergent series of operator on R^{n}
then prove that $\mathrm{A} \cdot \mathrm{B}=\mathrm{C}=\sum_{\ell=0}^{\infty} \mathrm{C} \ell \quad$ Where, $\mathrm{C} \ell=\sum_{\mathrm{j}+\mathrm{k}=\ell} \mathrm{A}_{\mathrm{j}} \mathrm{B}_{\mathrm{k}}$
d) Let $\mathrm{T}_{\mathrm{i}} \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}^{\mathrm{m}}$ be a linear transformation then show that, t is uniformly continuous.

UNIT - III

3. a) For operator T, find basis for the generalized eigen spaces, given the matrix of the semisimple nilpotent parts of T. where, $\mathrm{T}_{0}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.
b) Verify each of the following operator is nilpotent and find its canonical forms.
i) $\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 2 & 0\end{array}\right]$
ii) $\left[\begin{array}{ccc}0 & 2 & -2 \\ 0 & 0 & 4 \\ 0 & 0 & 0\end{array}\right]$

OR

c) Let $\lambda_{\mathrm{y}}, \lambda_{\mathrm{z}}$ be the roots of polynomial $\lambda^{2}+\mathrm{a} \lambda+\mathrm{b}$ then prove that every solution of the differential equation $\mathrm{s}^{\prime \prime}+\mathrm{a}_{\mathrm{s}}{ }^{\prime}+\mathrm{b}_{\mathrm{s}}=0$ is of the following types-
Case - I : λ_{1}, λ_{2} are real and distinct then $\mathrm{s}(\mathrm{t})=\mathrm{c}_{1} \mathrm{e}^{\lambda_{1} \mathrm{t}}+\mathrm{c}_{2} \mathrm{e}^{\lambda_{2} \mathrm{t}}$
Case $-\mathrm{II}: \lambda_{1}=\lambda_{2}=\lambda$ real then $\mathrm{s}(\mathrm{t})=\mathrm{c}_{1} \mathrm{e}^{\lambda \mathrm{t}}+\mathrm{c}_{2} \mathrm{te}^{\lambda \mathrm{t}}$
Case - III : $\lambda_{1}=\bar{\lambda}_{2}=u+i v, v \neq 0: \mathrm{s}(\mathrm{t})=\mathrm{e}^{\mathrm{ut}}\left(\mathrm{c}_{1} \cos v \mathrm{t}+\mathrm{c}_{2} \sin v \mathrm{t}\right)$
d) Let $\mathrm{T} \in \mathrm{L}(\mathrm{E})$ where E is complex if T has non-real eigen value. Then prove that, $\mathrm{t}=\mathrm{S}+\mathrm{N}$ where $\mathrm{SN}=\mathrm{NS}, \mathrm{S}$ is diagonalizable and N is nilpotent.

UNIT - IV

4. a) If every solution of $\mathrm{x}^{\prime}=\mathrm{Ax} \rightarrow 0$ as $\mathrm{t} \rightarrow \infty$ then prove that every eigen value of A has negative real part. And let $x(t)$ be any solution of $x^{\prime}=A x$ then prove that $\lim _{t \rightarrow 0} x(t)=0$
b) Let $A \in L\left(R^{n}\right)$ and let $x(t)$ be a solution of $x^{\prime}=A x$ then prove that each coordinate $x_{j}(t)$ of the solution is linear combination of the function $t^{k} e^{t a} \cos b t, t^{1} e^{t a}$ sinbt. Where $a+i b$ runs through all the eigen value of A with $b \geq 0$ and k and 1 run through all the integer 0 to $n-1$ moreover for each $d=a+i b k$ and 1 are less than the size of the longest d-block in the real canonical form of A.

OR

c) The set $\delta_{2}=\left\{T \in L\left(R^{n}\right) / \mathrm{e}^{\mathrm{tT}}\right.$ is hyperbolic flow $\}$ is open and dense in $L\left(\mathrm{R}^{\mathrm{n}}\right)$.
d) If $A \in L(E)$ then prove the following are equivalent.
a) The origin is a source for the dynamical system $x^{\prime}=A x$
b) For any norm on E , there are constants $\mathrm{L}>0, \mathrm{a}>0$ such that

$$
\left|\mathrm{e}^{\mathrm{tA}} \mathrm{x}\right| \geq \mathrm{Le}^{\mathrm{ta}}|\mathrm{x}|, \forall \mathrm{t} \geq \cdot 0, \mathrm{x} \in \mathrm{E}
$$

c) There exist a >0 and a basis $\beta(\mathrm{E})$ whose corresponding norm satisfies

$$
\left|\mathrm{e}^{\mathrm{tA}} \cdot \mathrm{x}\right| \beta \geq \mathrm{e}^{\mathrm{ta}}|\mathrm{x}| \beta, \forall \mathrm{t} \geq 0, \mathrm{x} \in \mathrm{E}
$$

5. a) Let A be an $\mathrm{n} x \mathrm{n}$ matrix having n distinct real eigen values $\lambda_{1}, \lambda_{2} \ldots . . ., \lambda_{\mathrm{n}}$. Then prove that there exists an invertible $n \times n$ matrix Q, such that $Q_{A Q}{ }^{-1}=\operatorname{diag}\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$
b) Let (E, N) be a normed vector space then prove that the unit ball $D=\{x \in E$ such that $\mathrm{N}(\mathrm{x}) \leq 1\}$ is compact.
c) Let A be any operator on real or complex vector space let it's characteristic polynomial be
$\mathrm{p}(\mathrm{t})=\sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{a}_{\mathrm{k}} \mathrm{t}^{\mathrm{k}}$ then prove $\mathrm{p}(\mathrm{A})=0$ i.e. $\sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{a}_{\mathrm{k}} \mathrm{A}^{\mathrm{k}}=0 \forall \mathrm{t} \in \mathrm{E}$
d) Find Jordan / real form for the operator ton real vector space $\left[\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right]$
