M.Sc. (Mathematics) (CBCS Pattern) Sem-I **PSCMTHT04 - Paper-IV : Linear Algebra & Differential Equations**

P. Pages: 3 Time : Three Hours Max. Marks: 100 Notes : 1. Solve all **five** questions. 2. Each question carries equal marks. UNIT – I Let A be an operator then prove the following statements are equivalent. 10 1. a) det $A \neq 0$ i) ii) ker A = (0)A is one-one iii) iv) A is onto A is invertible v) 10 b) Let $\{e_1, e_2, \dots, e_m\}$ be the basis of a vector space. If $\{v_1, v_2, \dots, v_r\}$ is a linearly

OR

- Let T be an operator for an n-dimensional vector space E. If the characteristic polynomial 10 c) of T – has n distinct real roots. Then prove that, T can be diagonalized.
- Solve the initial value problem for the system d)

independent set in E then prove that $r \leq m$.

 $x_1' = x_1, x_2' = x_1 + 2x_2, x_3' = x_1 - x_3$ $x(0) = (u_1, u_2, u_3)$

UNIT – II

2. Let $T: E \rightarrow E$ be an operator on a non real vector space with distinct non real eigen 10 a) values $\mu_1, \overline{\mu}_1, \mu_2, \overline{\mu}_2, \dots, \mu_s, \overline{\mu}_s$ then prove that there is an invariant direct sum decomposition for E and a corresponding direct sum decomposition for T. $E = E_1 \oplus E_2 \oplus ---- \oplus E_s$ $T = T_1 \oplus T_2 \oplus ---- \oplus T_s$

Such that each E_i is 2-Dimensional and $T_i \in L(E_i)$ has eigen value $\mu_i, \overline{\mu_i}$

b) Let P, S, T denotes operator on Rⁿ then prove that,

- i) If $Q = PTP^{-1}$ then $e^Q = Pe^TP^{-1}$
- ii) If ST = TS then $e^{S+T} = e^{S} \cdot e^{T}$
- iii) $e^{-5} = (e^{5})^{-1}$

1

10

10

GUG/W/22/11169

Let $\sum_{j=0}^{\infty} A_j = A$ and $\sum_{k=0}^{\infty} B_k = B$ be an absolutely convergent series of operator on \mathbb{R}^n

then prove that
$$A \cdot B = C = \sum_{\ell=0}^{\infty} C\ell$$
 Where, $C_{\ell} = \sum_{j+k=\ell} A_j B_k$

d) Let $T_i R^n \to R^m$ be a linear transformation then show that, t is uniformly continuous. 10

UNIT – III

3. a) For operator T, find basis for the generalized eigen spaces, given the matrix of the semisimple nilpotent parts of T. where, $T_0 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

b) Verify each of the following operator is nilpotent and find its canonical forms. 10 i) $\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix}$ ii) $\begin{bmatrix} 0 & 2 & -2 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{bmatrix}$

OR

c) Let λ_y, λ_z be the roots of polynomial $\lambda^2 + a\lambda + b$ then prove that every solution of the differential equation $s'' + a_s' + b_s = 0$ is of the following types-Case - I: λ_1, λ_2 are real and distinct then $s(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$ Case - II: $\lambda_1 = \lambda_2 = \lambda$ real then $s(t) = c_1 e^{\lambda t} + c_2 t e^{\lambda t}$ Case - III: $\lambda_1 = \overline{\lambda_2} = u + iv, v \neq 0$: $s(t) = e^{ut} (c_1 \cos vt + c_2 \sin v t)$

d) Let $T \in L(E)$ where E is complex if T has non-real eigen value. Then prove that, t = S + N 10 where SN = NS, S is diagonalizable and N is nilpotent.

$\mathbf{UNIT} - \mathbf{IV}$

- 4. a) If every solution of $x' = Ax \rightarrow 0$ as $t \rightarrow \infty$ then prove that every eigen value of A has negative real part. And let x(t) be any solution of x' = Ax then prove that $\lim_{t \rightarrow 0} x(t) = 0$
 - b) Let $A \in L(\mathbb{R}^n)$ and let x(t) be a solution of x' = Ax then prove that each coordinate $x_j(t)$ 10

of the solution is linear combination of the function $t^k e^{ta} \cos bt$, $t^l e^{ta} \sinh bt$. Where a + ib runs through all the eigen value of A with $b \ge 0$ and k and l run through all the integer 0 to n-1 moreover for each d = a + ib k and l are less than the size of the longest d-block in the real canonical form of A.

OR

c)

10

The set $\delta_2 = \{T \in L(\mathbb{R}^n) / e^{tT} \text{ is hyperbolic flow} \}$ is open and dense in $L(\mathbb{R}^n)$. 10 c) d) If $A \in L(E)$ then prove the following are equivalent. 10 The origin is a source for the dynamical system x' = Axa) For any norm on E, there are constants L > 0, a > 0 such that b) $|e^{tA} x| \ge Le^{ta} |x|, \forall t \ge 0, x \in E$ There exist a > 0 and a basis $\beta(E)$ whose corresponding norm satisfies c) $|e^{tA} \cdot x|\beta \ge e^{ta} |x|\beta, \forall t \ge 0, x \in E$ Let A be an n x n matrix having n distinct real eigen values $\lambda_1, \lambda_2, \dots, \lambda_n$. Then prove 5. 5 a) that there exists an invertible n x n matrix Q, such that $QAQ^{-1} = diag \{\lambda_1, \lambda_2, \dots, \lambda_n\}$ Let (E, N) be a normed vector space then prove that the unit ball $D = \{x \in E \text{ such that } dx \in E \}$ 5 b) $N(x) \le 1$ is compact. Let A be any operator on real or complex vector space let it's characteristic polynomial be 5 c) $p(t) = \sum_{k=0}^{n} a_k t^k$ then prove p(A) = 0 i.e. $\sum_{k=0}^{n} a_k A^k = 0 \forall t \in E$ 5 d) Find Jordan / real form for the operator ton real vector space $\begin{vmatrix} 1 & 1 \\ 0 & -1 \end{vmatrix}$
