M.Sc. I (Mathematics) (CBCS Pattern) Sem-I PSCMTHT03 - Paper-III : Topology-I

	ages : ie : Th	$\frac{1}{2}$ hree Hours $\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$	GUG/W/22/11168 Max. Marks : 100		
	Not	tes : 1. Solve all five questions. 2. All questions carry equal marks.			
		UNIT – I			
1.	a)	Prove that countable union of countable set is countable.	10		
	b)	Show that a set of all real numbers is uncountable.	10		
		OR			
	c)	Prove that every infinite set contains a denumerable subset.	10		
	b)	Prove that $2^{NO} = C$.	10		
UNIT – II					
2.	a)	Prove that f is closed iff its complement is open.	10		
	b)	Prove that Y^* is a topology for X^* .	10		
OR					
	c)	Prov that $i(E) = C(\sim E)$.	10		
	d)	 Let E be a subset of a topological space (X, J) prove that i) c (E) = E U B (E) ii) i (E) = E - b (E) iii) b (E) = φ if and only if E is both open and closed. [Here c, i and b de interior and boundary operator respectively]. 	10 enote closure,		
		UNIT – III			
3.	a)	Prove that a closed subset of a locally compact topological space is locally	compact. 10		
	b)	If F is a continuous mapping of a topological space X into another topolog then prove that F maps every connected subset of X into a connected subset			
		OR			

c) If C is connected subset of a topological space (X, J) which has separation X=A/B then 10 prove that $C \subseteq A$ or $C \subseteq B$.

d) If C is a connected subset of a topological space (x, τ) which is it self connected and 10 (X-C) has a separation A/B, then prove that $A \cup C$ and $B \cup C$ both are connected.

$\mathbf{UNIT} - \mathbf{IV}$

4.	a)	Prove that, compact subset E of a Hausdorff topological space is closed.		
	b)	Prove that T_1 -space X is countably compact iff every countably open covering of X is reducible to a finite subcover.		
		OR		
	c)	Prove that Let (X, J) be a topological space prove that X is T_1 -space iff every singleton set in X is closed.	10	
	d)	Prove that A topological space X is regular iff only point $x \in X$ and any open set G in X such that $x \in G$ there exist an open set G^* in X such that $x \in G^*$ and $c(G^*) \subseteq G$.	10	
5.	a)	Show that the set of integers Z is denumerable.	5	
	b)	Prove that if F is a closed set then CF is an open set.	5	
	c)	Prove that closure of connected set is connected.	5	
	d)	Give an example of To space which is not T_1 -space.	5	
