P. Pages: 2

Time : Three Hours

GUG/W/22/11167

Max. Marks: 100

Notes :1.Solve all the **five** questions.2.All questions carry equal marks.

UNIT – I

1. a) Suppose $f_n \to f$ uniformly an a set E in a metric space. Let x be a limit point of E & 10 suppose that $\lim_{t\to x} f_n(t) = A_n, n = 1, 2,$ Then prove that $\{A_n\}$ converges & $\lim_{t\to x} f(t) = \lim_{n\to\infty} A_n$.

b) Prove that a convergent series of continuous function may have discontinuous sum. **10**

OR

c) Let α be a monotonically increasing on [a, b] let $\operatorname{fn} ER(\alpha)$ on [a, b] for $n = 1, 2, \dots \& 10$ let $f_n \to f$ uniformly on [a, b] then show that $f \in R(\alpha)_1$ on [a, b] &

$$\int_{a}^{b} f d\alpha = \lim_{n \to \infty} \int_{a}^{b} f_n d\alpha$$

d) State & prove the Stone-Weierstrass theorem.

UNIT – II

2. a) Suppose that E be an open set in \mathbb{R}^n and $f: E \to \mathbb{R}^n$, $x \in E$ & $\lim_{h \to 0} \frac{|f(x+h) - f(x) - Ah|}{|h|} = 0$

holds for
$$A = A_1$$
 and $A = A_2$ where $A_1, A_2 \in L(\mathbb{R}^n, \mathbb{R}^m)$. Then prove that $A_1 = A_2$.

b) Suppose that f maps an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m and f is differentiable at a point $x \in E$. 10 Then prove that the partial derivatives $(D_j f_i)(x)$ exist and

$$f'(x)e_{j} = \sum_{i=1}^{m} (D_{j}f_{j})(x)u_{i}, 1 \le j < n \text{ where } \{e_{1}, e_{2}, ..., e_{n}\} \text{ and } \{u_{1}, u_{2}, ..., u_{m}\} \text{ are } \{e_{1}, e_{2}, ..., e_{n}\}$$

standard bases of R^n and R^m respectively.

OR

- c) State and prove the inverse function theorem.
- d) Let f maps open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m . Then prove that $f \in C'(E)$ if and only if the partial derivative $D_i f_i$ exist & are continuous on E for $1 \le i \le m$, $1 \le j \le n$.

10

10

10

10

3. a) Prove that:

The vector space $T_a(R^n)$ is isomorphic to the vector space D (a) of all derivations of $C^{\infty}(a)$ into R. This isomorphism is given by making each X_a correspond to the directional derivative X_a^* in the direction of X_a .

- b) Let M be a Hausdorff space with a countable basis of open sets. If $V = \{ (V_{\beta}, \psi_{\beta}) \}$ is a 10 covering of M by C^{∞} compatible coordinate neighbourhoods, then prove that there is a unique C^{∞} structure on M containing these coordinate neighbourhoods.
- c) Define diffeomorphism between two C^{∞} manifolds & show that by an example that C^{∞} 10 homomprhism may not be a diffeomorphism.
- d) Let ~ be an open equivalence relation on a topological space X then prove that 10 $R = \{(x, y)/x \sim y\}$ is a closed subset of the space X×X if and only if the quotient space X/~ is Hausdorff.

$\mathbf{UNIT} - \mathbf{IV}$

- **4.** a) Prove that S^2 is a regular submanifold of R^3 .
 - b) If $G_1 \& G_2$ are lie group then show that the direct product $G_1 \times G_2$ of these group with **10** C^{∞} structure of the Cartesian product of manifold is a Lie group. **OR**
 - c) Let $f: N \to M$ be an immersion then show that each $p \in N$ has a neighbourhood U such 10 that F/U is an imbedding of U in M.
 - d) Let a map $f:(1,\infty) \to \mathbb{R}^2$ given by $f(t) = \left(\frac{\cos 2\pi t}{t}, \frac{\sin 2\pi t}{t}\right)$, then describe the image of 10 f & prove that f is an immersion.
- 5.

a) If $f_n = n^2 x (1-x^2)^2$, $(0 \le x \le 1, n = 1, 2,)$ then show that the limit of the integral need not be equal to the integral of limit.

- b) Define projection in a vector space. State two properties of projection.
 c) Define a differentiable manifold.
 d) Define
 i) Imbedded submanifold
 ii) Regular submanifold
 - iii) Lie group
