Notes: 1. All questions are compulsory and carry equal marks.
2. Draw neat and labelled diagrams wherever necessary.
3. Avoid vague answers and write answers relevant and specific to questions only.

## Either :

1. a) Let $\mathrm{a}, \mathrm{b}$ and c be integer, then prove
i) If $a / b$ and $a / c$, then $a / b+c$
ii) If $\mathrm{a} / \mathrm{b}$ and $\mathrm{a} / \mathrm{c}$, where $\mathrm{b}>\mathrm{c}$, then $\mathrm{a} / \mathrm{b}-\mathrm{c}$
iii) If $a / b$ and $a / c$, then $a / b c$
iv) If $a / b$ and $b / c$, then $a / c$
b) What is Set? Explain different operations on Set?

## OR

c) If A and B are matrices, then
a) $\left(A^{T}\right)^{T}=A$
b) $(A+B)^{T}=A^{T}+B^{T}$
c) $(A B)^{T}=B^{T} A^{T}$
d) If $a$ and $b$ are + ve integer then $\operatorname{GCD}(a, b) \cdot \operatorname{LCM}(a, b)=a \cdot b$

## Either :

2. a) Explain the Pigeonhole Principle with example.
b) Prove that then the number of permutations of ' n ' objects taken ' r ' at a time, $\mathrm{r} \leq \mathrm{n}$ is given by

$$
{ }^{n} p_{r}=\frac{n!}{(n-r)!}=n \cdot(n-1) \cdot(n-2) \ldots \ldots(n-r+1)
$$

## OR

c) Explain the Properties of Relation with examples?
d) Write short note on Warshall's algorithm.

## Either :

3. a) Define:
1) Partially ordered Set
2) Hasse Diagram
b) Define following terms:
i) Graph
ii) Adjacent Node
iii) Parallel Edges
iv) Loop

## OR

c) Explain Hamiltonian path and Circuit with example?
d) Explain Euler path and Circuit with examples?

## Either :

4. a) Consider the binary operation * on Q, the set of rational number defined by
$a * b=\frac{a b}{2}$ for every $a, b \in Q$
b) Prove the left Cancellation law i.e $\mathrm{ab}=\Rightarrow \mathrm{ac} \mathrm{b}=\mathrm{c} \forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{G}$ (Left Cancellation).

## OR

c) Prove the right Cancellation law i.eba $=\mathrm{ca} \mathrm{b}=\Rightarrow \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{G}$ (right cancellation)
d) Explain Finite - State Machines.
5. Attempt all the questions.
a) Construct a Truth table for $\sim(\mathrm{p} \vee \mathrm{q}) \equiv \sim \mathrm{p} \wedge \sim \mathrm{q}$
b) Prove that the number of permutations of ' $n$ ' thing taken all at a time in $n$ !
c) Prove that In a Distributive Lattice the complement of a element is unique.
d) What is Abelian Group?

