M.Sc.- I (Computer Science) (CBCS Pattern) Sem-I PSCSCT02 - Paper-II : Discrete Mathematics

P. Pages : 2 Time : Three I			GUG/W/22/11143 Max. Marks : 80	
	Not	 es: 1. All questions are compulsory and carry equal marks. 2. Draw neat and labelled diagrams wherever necessary. 3. Avoid vague answers and write answers relevant and specific to questions onl 	у.	
	Eitł	her:		
1.	a)	Let a, b and c be integer, then prove	8	
		 i) If a/b and a/c, then a/b+c ii) If a/b and a/c, where b>c, then a/b-c iii) If a/b and a/c, then a/bc iv) If a/b and b/c, then a/c 		
	b)	What is Set? Explain different operations on Set?	8	
		OR		
	c)	If A and B are matrices, then	8	
		a) $\left(A^{T}\right)^{T} = A$		
		b) $(A+B)^{T} = A^{T} + B^{T}$ c) $(AB)^{T} = B^{T}A^{T}$		
		c) $(AB)^{T} = B^{T}A^{T}$		
	d)	If a and b are +ve integer then $GCD(a,b)$. $LCM(a,b) = a.b$	8	
	Eitł	her:		
2.	a)	Explain the Pigeonhole Principle with example.	8	
	b)	Prove that then the number of permutations of 'n' objects taken 'r' at a time, $r \le n$ is given by	ven 8	
		by ${}^{n}p_{r} = \frac{n!}{(n-r)!} = n.(n-1).(n-2)(n-r+1)$		
		OR		
	c)	Explain the Properties of Relation with examples?	8	
	d)	Write short note on Warshall's algorithm.	8	
	Eitł	her:		
3.	a)	Define : 1) Partially ordered Set 2) Hasse Diagram	8	

Define following terms: i) Graph ii) Adjacent Node iii) Parallel Edges iv) Loop b)

OR

	c)	Explain Hamiltonian path and Circuit with example?	8
	d)	Explain Euler path and Circuit with examples?	8
	Either :		
4.	a)	Consider the binary operation * on Q, the set of rational number defined by $a * b = \frac{ab}{2}$ for every $a, b \in Q$	8
	b)	Prove the left Cancellation law i.e $ab = \Rightarrow ac \ b = c \forall a, b, c \in G$ (Left Cancellation).	8
		OR	
5.	c)	Prove the right Cancellation law i.eba = ca $b = \Rightarrow a, b, c \in G$ (right cancellation)	8
	d)	Explain Finite – State Machines.	8
		Attempt all the questions.	
	a)	Construct a Truth table for $\sim (p \ v \ q) \equiv \sim p \land \sim q$	4
	b)	Prove that the number of permutations of 'n' thing taken all at a time in n!	4
	c)	Prove that In a Distributive Lattice the complement of a element is unique.	4
	d)	What is Abelian Group?	4
