B.Sc. T.Y. (C.B.C.S. Pattern) Sem-V USDSEPHT09 - Physics Paper-I - Elements of Modern Physics

P. Pages : 3 Time : Three Hours			ours * 3 8 8 3 *	GUG/W/19/13093 Max. Marks : 50	
	Not		 All questions are compulsory. Draw neat and well labelled diagrams wherever necessary. 		
1.		Eith	ner :		
	a)	i)	State and explain Heisenberg's uncertainty principle.	2	
		ii)	Describe the gamma ray microscope experiment to prove the Heisenl uncertainty principle.	berg's 4	
		iii)	Show that electrons do not exist inside the nucleus using Heisenberg principle.	's uncertainty 2	
		iv)	Find the uncertainty in the momentum of a particle when its position within 0.01 cm (Given $\hbar = 1.05 \times 10^{-34}$ J.S).	is determined 2	
			OR		
	b)	a)	What are the salient features of black body radiation spectrum.	21/2	
		b)	State de-Broglie's hypothesis for matter waves. Express de-Broglie's terms energy.	s equation in $2^{1/2}$	
		c)	Explain the concept of wave particle duality.	21/2	
		d)	Find the energy of a neutron in eV, given that de-Broglie wavelength 1A° and its mass, $m_n = 1.67 \times 10^{-27} \text{ kg} (h = 6.63 \times 10^{-34} \text{ J.S})$.	a of neutron is $2^{1/2}$	
2.	Either :				
	a)	i)	Give physical significance of a wave function and state the condition function to be well behaved.	s for a wave 3	
		ii)	Obtain an expression for energy of a free particle in one dimensional	rigid box. 4	
		iii)	Find the energy difference between the ground state and the first exce an electron in a box of length 1A° (given $m = 9.1 \times 10^{-31}$ kg).	ited state for 3	
	OR				
	b)	a)	What is eigen function and eigen value? Explain them with example.	21/2	
		b)	Derive Schrödinger's wave equation in time independent form.	21/2	

	c)	Explain the tunnel effect with neat diagram using quantum mechanics.	21/2				
	d)	Calculate the ground state energy for an electron moving back and forth between potential barriers 10^{-7} cm apart	21/2				
		(given $m = 9.1 \times 10^{-28}$ gm and $h = 6.63 \times 10^{-27}$ evg.s)					
	Either :						
a)	i)	What is α - decay? Give its characteristics.	2				
	ii)	Explain in detail Gamow's theory of α - decay.	6				
	iii)	Obtain an expression for Geiger – Nuttal Law from Gamow's theory.	2				
	OR						
b)	a)	What is binding – energy? Explain how the stability of nucleus can be checked with the help of $B - E$ per nucleon curve.	21/2				
	b)	The half life of a radioactive element is 10 days. How long will it take for 90% of the sample to disintegrate?	21/2				
	c)	Explain the different properties of nucleus.	21/2				
	d)	Explain mean life period of a radioactive element and derive an expression for it.	21/2				
	Eith	ner:					
a)	i)	Describe the construction and working of nuclear reactor.	5				
	ii)	Explain the various stages in the fission process as given by the liquid drop model.	3				
	iii)	What is chain reaction? How is it obtained?	2				
OR							
b)	a)	Explain β - ray spectrum.	21/2				
	b)	What are difficulties involved in explaining β - ray spectrum? How these are eliminated.	21/2				
	c)	Explain why fusion reactions are called thermonuclear reactions?	21/2				
	d)	Calculate the energy liberated when a helium nucleus is formed by fusion of two deuterium nuclei. The mass of $H_2 = 2.014102$ amu and mass of	21/2				

 $_2$ He⁴ = 4.002604 amu.

3.

4.

Solve any ten of the following.						
a)	What is wave packet?	1				
b)	Draw the experimental set up for Davisson and Germer experiment.	1				
c)	What is the momentum of photon of wavelength 6×10^{-7} m. (Given $h = 6.63 \times 10^{-34} \text{ J} \cdot \text{S}$)	1				
d)	What is normalized wave functions.	1				
e)	Write Schrödinger's time dependent equation in three dimensions.	1				
f)	What is an operator?	1				
g)	Define range of α – particle.	1				
h)	Give the relation between half life and mean life of a radioactive element.	1				
i)	Enumerate the important characteristics of the nuclear forces.	1				
j)	What are the different properties of neutrino?	1				
k)	Write a note on 'Stellar energy'.	1				
1)	When a nucleus emits gamma ray photon, what happens to its atomic number and its actual mass?	1				

5.