		US	SCCHT04 - Chemistry Paper-II (Physical Chemistry)	
P. Pages : 2 Time : Three Hours			GUG/W/ ★ 3 3 6 8 ★ Max.	
	Note	s: 1. 2.	All questions are compulsory and carry equal marks. Draw diagram whenever necessary.	
1.	a)	Find ma and min	axima and minima point of the function $f(x) = x^3 - 12x + 3$. Also find maxima ima values.	5
	b)	What is constant	hydrolysis? Define hydrolysis constant? Derive the relation between hydrolysis and degree of hydrolysis for the salt of strong acid and weak base.	5
			OR	
	c)	Calculat	the value of $\left[\frac{0.188 \times 172 \times 75}{0.064 \times 98}\right]^{1/2}$ by using log table.	21/2
	d)	Find the	equation of line passing through the point (3,6) and (-5,9) and also Y intercept.	21/2
	e)	The solu BaSO4 a	Ibility of BaSO ₄ is 2.33×10^{-4} gm/ml at 20°C. Calculate solubility product of assuming that the salt is completely ionised.	21/2
	f)	What ar	e the different factors affecting the degree of dissociation.	21/2
2.	a)	Derive a $T_1 \& T_2$.	in expression for efficiency of carnot cycle working between the temperature	5
	b)	Explain	Hess's Law of constant heat of summation.	5
		Calculat $C_2H_{4(g)}$ and etha	the heat reaction $_{)} + H_{2(g)} \rightarrow C_2 H_{6(g)}$ at 25°C. if the heat of combustion of ethylene, hydrogen ine are – 338.0, -70.4 and 380.0 Kcal respectively at 25°C.	
			OR	
	c)	Explain	intensive and extensive property with suitable example.	21/2
	d)	State an	d explain path function and state function with one example each.	21/2
	e)	Define 1 volume	nolar heat capacity? Derive the relation between heat capacity at constant and constant pressure.	21/2
	f)	Derive I	Kirchhoff's equation showing effect of temperature on heat of reaction.	21/2
3.	a)	Derive I square v	Kinetic gas equation $PV = \frac{1}{3}mn\mu^2$ for an ideal gas where μ is root mean velocity.	5

B.Sc. (Part-I) (C.B.C.S. Pattern) Sem-II

	b)	Describe the critical phenomenon with suitable example. Explain isotherms on the basis of Van der Waals equation.	5	
	c)	OR Calculate average velocity and RMS velocity of ethane molecule of 27°C ($R = 8.314 \text{ JK}^{-1}\text{mol}^{-}$)	21/2	
	d)	Explain the effect of temperature on molecular velocities.	2 ¹ / ₂	
	e)	What are the different causes of deviation from ideal behaviour.	2¹/ ₂	
	f)	Derive the relationship between critical constant and Van der Waals constant.	2 ¹ / ₂	
4.	a)	Define surface tension. Describe drop number method for determination of surface tension.	5	
	b)	Derive Bragg's equation. When X-ray of a specific wavelength were used to study a crystal, the 1 st order reflection obtained at 10° from 111 plane. Calculate the angle at which 2 nd order reflection will be obtained from the same crystal using same wavelength from the same plane.		
		OR		
	c)	The flow time of water in an Ostwald viscometer is 60 sec at 25°C. If the same volume of another liquid having density 0.867 gcm ⁻³ takes 48 sec. Calculate absolute viscosity of that liquid. Given viscosity of water is 0.00895 poise density of water is 1.0 gmcm ⁻³		
	d)	What is Parachor value? Explain its application in structure determination.	21/2	
	e)	Describe powder method for the determination of structure of crystal.	2¹/ ₂	
	f)	State and explain Law of symmetry.	2¹/ ₂	
5.		Attempt any ten . i) What is common ion effect?	10	
		ii) Differentiate $4x^3 + 7x^2 - 7x + 10$ w.r. to x.		
		iii) Evaluate a) ${}^{20}P_5$ b) ${}^{30}C_6$		
		iv) Define isolated system and Isothermal process.		
		v) State any two statement of 1 st law of thermodynamics.		
		vi) Define bond dissociation energy.		
		vii) State Avogadro's law.		
		viii) Define Most probable velocity.		
		ix) Define Critical temperature.		
		x) Define Coefficient of viscosity and give its SI units.		
		xi) State the law of constancy of interfacial angle.		

xii) Calculate Miller indices of crystal plane who'se Weiss indices are $\frac{2}{3}$, 2, $\frac{1}{3}$.
