M.Sc.- II (Mathematics) (Old + C.B.C.S. Pattern) Sem-IV

MSC2494 / PSCMTHT19.2-Paper-XIX - Cosmology / General Relativity-II GUG/W/19/11400

P. Pages: 1

Time : Three Hours

Max. Marks: 100

	Note	 es: 1. Solve all the five questions. 2. All questions carry equal marks. 	
		UNIT - I	
1.	a)	Discuss the necessary & sufficient condition that the first covariant derivative of covariant vector be symmetric is that the vector be gradient.	10
	b)	Obtain the Riemannian Christoffel symbol R^{a}_{ijk} .	10
		OR	
	c)	Obtain the differential equation of geodesic in a given space.	10
	d)	Show that the divergence of Einstein's tensor vanishes.	10
		UNIT - II	
2.	a)	Obtain the energy momentum tensor in Galilean coordinate system.	10
	b)	Prove that the Poisson's equation can be recovered to field equation of general theory of relativity.	10
		OR	
	c)	Discuss the principle of covariance.	10
	d)	Obtain the energy momentum tensor for non interactive coherent cartesian matter.	10
		UNIT - III	
3.	a)	State & prove the Brikhoff's theorem.	10
	b)	Derive the equation of planetary orbit in the general theory of relativity.	10
		OR	
	c)	Discuss the Schwarschild's singularity.	10
	d)	Explain the gravitational red shift in the spectral line.	10
		UNIT - IV	
4.	a)	Derive the gravitational field equations for nonempty space.	10
	b)	Obtain the Weyl's solution of linearized field equation.	10
		OR	
	c)	Obtain the Schwarzschild's interior solution for the spherically symmetric distribution of matter with constant density.	10
	d)	Derive the linearized field equation.	10
5.	a)	Show that ${i \atop ij} = \frac{\partial}{\partial xj} \log \sqrt{g}$	5
	b)	State the Mach principle.	5
	c)	Discuss the advance of perihelion of a planet.	5
	d)	Explain:	5
		i) Lorenz-gauge ii) Associated Weyl solution	
